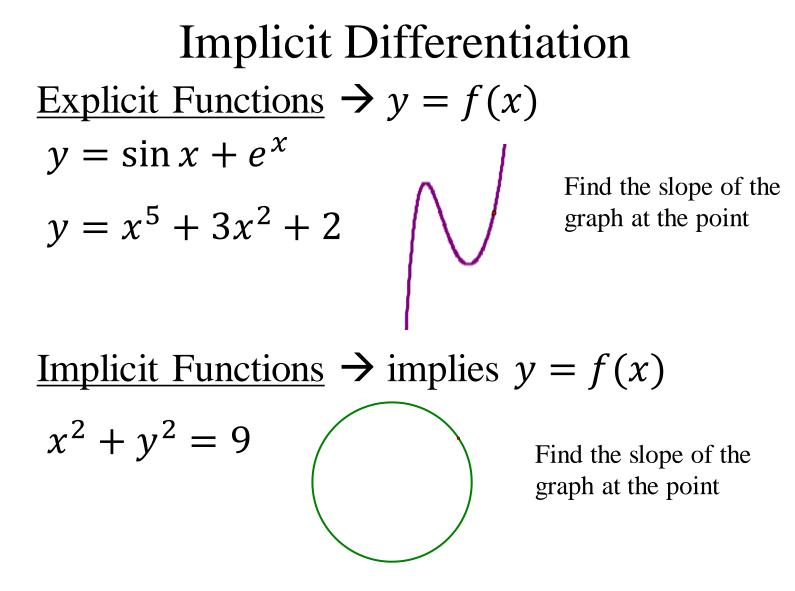
Warm up Problems 1. $\frac{d}{dx}(\ln x)^2$

$$2.\,\frac{d}{dy}y^2\tan^{-1}y$$

$$3. \frac{d}{dt} e^{\ln\left(\frac{1}{t}\right)}$$



Ex. Differentiate

1.
$$y = x$$

 $\gamma' = |$
2. $y = x^2$
 $\gamma' = 2 \times$
3. $y = (2x - 1)^2$
 $\gamma' = 2(2 \times -1) \cdot 2$
4. $y = (f(x))^2$
 $\gamma' = 2f(x) \cdot f'(x)$
5. $x = y^2$
 $| = 2 \gamma \gamma'$

To differentiate an implicit function, we differentiate term-by-term:

- Take the derivative of *x*-function as usual.
- The derivative of y-function gets multiplied by y'.
- If *x*'s and *y*'s are in the same term, use product rule.

After differentiating, solve for y'.

<u>Ex.</u> If $\cos x + y^2 - y = x$, find $\frac{dy}{dx}$. - sin x + 2yy'- |y'= | 2 yy' - y' = 1 + sin X y'(Zy-1) = 1 + m x $y' = \frac{1 + \sin x}{2 \sqrt{-1}}$

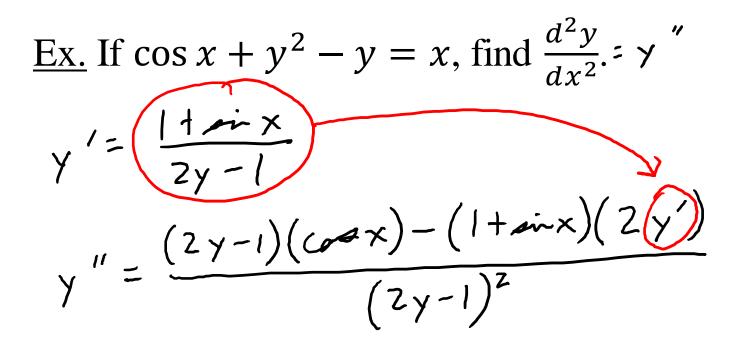
 $\underline{\operatorname{Ex.}} \ln y + x^2 y_{\perp}^4 + e^x = 5$ $\frac{1}{y}y' + \frac{x^{2}}{y^{3}} + \frac{y^{3}}{y'} + \frac{y^{4}}{y^{2}} + \frac{y^{4}}{z} = 0$ $\frac{1}{y}y' + 4x^{2}y^{3}y' = -2xy^{4} - e^{x}$ $y'(\frac{1}{y}+4\chi^2\gamma^3) = -2\chi y'' - e\chi$ $\gamma' = \frac{-2\chi \gamma' - e^{\chi}}{\frac{1}{2} + 4\chi^2 \gamma^3}$

<u>Pract.</u> $x^2 + y^2 = 16$ $y' = -\frac{x}{y}$

<u>Pract.</u> $x^3y + y^3 = -10$ $\gamma' = \frac{-3x^2\gamma}{x^3+3y^2}$

Ex. Find the slope of the line tangent to

$$y = x + \cos(xy)$$
 at the point where $x = 0$.
 $y' = (1 - \sin(xy)(xy' + y \cdot 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 $y' = (1 - \sin(0 - 1)(0y' + 1))$
 y'



<u>Ex.</u> Find the coordinates of any point on $x^2 + y^2 = 16$ where the tangent line has the slope of -1.

 $\chi^2 + \gamma^2 = 16$ $y' = \frac{-x}{y} = -1$ $\chi^{2} + \chi^{2} = 16$ $2\chi^{2} = 16$ -x=-y y=x x2=8 $X=\pm\sqrt{8}$ $(\sqrt{8}, \sqrt{8})(-\sqrt{8}, -\sqrt{8})$

Ex. Let
$$f(x)' = x^3 + x$$
. If $g(x) = f^{-1}(x)$
and $f(2) = 10$, find $g'(10)$.

