Warm up Problems

$$
\begin{aligned}
& \text { 1. } \frac{d}{d x}(\ln x)^{2} \\
& \text { 2. } \frac{d}{d y} y^{2} \tan ^{-1} y \\
& \text { 3. } \frac{d}{d t} e^{\ln \left(\frac{1}{t}\right)}
\end{aligned}
$$

Implicit Differentiation

Explicit Functions $\rightarrow y=f(x)$

$$
\begin{aligned}
& y=\sin x+e^{x} \\
& y=x^{5}+3 x^{2}+2
\end{aligned}
$$

Find the slope of the graph at the point

Implicit Functions \rightarrow implies $y=f(x)$

$$
x^{2}+y^{2}=9
$$

Find the slope of the graph at the point

Ex. Differentiate

1. $y=x$
2. $\begin{aligned} y^{\prime} & =1 \\ y & =x^{2}\end{aligned}$
$y^{\prime}=2 x$
3. $y=(2 x-1)^{2}$
$y^{\prime}=2(2 x-1) \cdot 2$
4. $y=(f(x))^{2}$
5. $\begin{aligned} y^{\prime} & =2 f(x) \cdot f^{\prime}(x) \\ x & =2 y\end{aligned}$
$1=2 y y^{\prime}$

To differentiate an implicit function, we differentiate term-by-term:

- Take the derivative of x-function as usual.
- The derivative of y-function gets multiplied by y^{\prime}.
- If x 's and y 's are in the same term, use product rule.

After differentiating, solve for y^{\prime}.

Ex. If $\cos x+y^{2}-y=x$, find $\frac{d y}{d x}$.

$$
\begin{array}{r}
-\sin x+2 y y^{\prime}-1 y^{\prime}=1 \\
2 y y^{\prime}-y^{\prime}=1+\sin x \\
y^{\prime}(2 y-1)=1+\sin x \\
y^{\prime}=\frac{1+\sin x}{2 y-1}
\end{array}
$$

Ex. $\ln y+\underbrace{x^{2} y^{4}}+e^{x}=5$

$$
\begin{gathered}
\frac{1}{y} y^{\prime}+x^{2} \cdot 4 y^{3} \cdot y^{\prime}+y^{4} \cdot 2 x+e^{x}=0 \\
\frac{1}{y} y^{\prime}+4 x^{2} y^{3} y^{\prime}=-2 x y^{4}-e^{x} \\
y^{\prime}\left(\frac{1}{y}+4 x^{2} y^{3}\right)=-2 x y^{4}-e^{x} \\
y^{\prime}=\frac{-2 x y^{4}-e^{x}}{\frac{1}{y}+4 x^{2} y^{3}}
\end{gathered}
$$

Pract. $x^{2}+y^{2}=16$

$$
y^{\prime}=-\frac{x}{y}
$$

$$
\begin{aligned}
\text { Pract. } x^{3} y+y^{3} & =-10 \\
y^{\prime} & =\frac{-3 x^{2} y}{x^{3}+3 y^{2}}
\end{aligned}
$$

Ex. Find the slope of the tine tangent to $y=x+\cos (x y)$ at the point where $x=0$.

$$
\begin{array}{cc}
y^{\prime}=1-\sin (x y)\left(x y^{\prime}+y \cdot 1\right) & y=0+\cos (0, y) \\
y^{\prime}=1-\sin (0.1)\left(0 y^{\prime}+1\right) & y=1 \\
y^{\prime}=1 &
\end{array}
$$

Ex. If $\cos x+y^{2}-y=x$, find $\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}$

$$
\begin{aligned}
& y^{\prime}=\frac{1+\sin x}{2 y-1} \\
& y^{\prime \prime}=\frac{(2 y-1)(\cos x)-(1+\sin x)\left(2\left(y^{\prime}\right)\right.}{(2 y-1)^{2}}
\end{aligned}
$$

Ex. Find the coordinates of any point on $x^{2}+y^{2}=16$ where the tangent line has the slope of -1 .

$$
\begin{aligned}
y^{\prime}=\frac{-x}{y} & =-1 \\
-x & =-y \\
y & =x
\end{aligned}
$$

$$
x^{2}+y^{2}=16
$$

$$
x^{2}+x^{2}=16
$$

$$
2 x^{2}=16
$$

$$
x^{2}=8
$$

$$
x= \pm \sqrt{8}
$$

\[

\]

Ex. Let $f(x)^{y}=x^{3}+x$. If $g(x)=f^{-1}(x)$ and $f(2)=10$, find $g^{\prime}(10)$.

$$
\begin{aligned}
& 9 \\
& x=y^{3}+y \quad(10,2) \\
& 1=3 y^{2} y^{\prime}+1 y^{\prime} \\
& 1=3(2)^{2} y^{\prime}+y^{\prime} \\
& 1=13 y^{\prime} \\
& y^{\prime}=\frac{1}{13}
\end{aligned}
$$

