- Blue part is out of 29
- Green part is out of 71
\rightarrow Total of 100 points possible

L'Hopital's Rule

Ex. $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}=\frac{0}{0}$
We can use a table of values, but there's an easier way.

Thm. L'Hopital's Rule

Consider $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$. If $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ as $x \rightarrow a$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

\rightarrow Do not write " $=\frac{0}{0}$ "
\rightarrow You must evaluate top and bottom limits individually
\rightarrow Also works when the limit is of the form $\frac{\infty}{\infty}$

Ex. $\lim _{x \rightarrow 1} \frac{\ln x}{x-1} \triangleq \lim _{x \rightarrow 1} \frac{1 / x}{1}=1$

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \ln x=0 \\
& \lim _{x \rightarrow 1}(x-1)=0
\end{aligned}
$$

- This is not the quotient rule!
- Always plug in the number first to be sure that LHR applies.

Ex. $\lim _{x \rightarrow 2} \frac{x^{4}-16}{x-2} \stackrel{\llcorner }{=} \lim _{x \rightarrow 2} \frac{4 x^{3}}{1}=32$

$$
\begin{aligned}
& \lim _{x \rightarrow 2}\left(x^{4}-16\right)=0 \\
& \lim _{x \rightarrow 2}(x-2)=0
\end{aligned}
$$

Ex. $\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}} \stackrel{L}{=} \lim _{x \rightarrow \infty} \frac{2 x}{e^{x}} \stackrel{L}{=} \lim _{x \rightarrow \infty} \frac{2}{e^{x}}=0$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} x^{2}=\infty \\
& \lim _{x \rightarrow \infty} e^{x}=\infty \\
& \lim _{x \rightarrow \infty} 2 x=\infty \\
& \lim _{x \rightarrow \infty} e^{x}=\infty
\end{aligned}
$$

Ex. $\lim _{x \rightarrow 5} \frac{2 x-3}{x+4}=\frac{7}{9}$

Ex. $\lim _{x \rightarrow 0} \frac{e^{x}}{x^{2}}=\frac{1}{+0}=\infty$

$$
\lim _{x \rightarrow 0} \frac{e^{x}}{x^{3}}=\frac{1}{ \pm 0}=\text { ONE }
$$

Bytmpitathaxdablf thie bythath, am smart,
 Whate futcgblumin thedhephre them,
Airldôplabab that we're making this strange,
Enese

Drathifitl: can say have to go repeat one more time.

indefesuillatatingoffruction may be leaving its mark!
L'Hôpital:
Aner thenwhasndangndbegat'a sitolk bit terrified but then I think of all your advice.
Bưtôpoistl.of the time, well it does,
Eorilhaashef Filançionse AnutosmagMuoqkass de
L'Hôpital:
Guillaume François Antoine Marquis de L'Hôp!

Pract. $\lim _{x \rightarrow 0} \frac{\sin x}{x}$

Pract. $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{2}}$

Pract. $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$

Pract. $\lim _{x \rightarrow 0} \frac{x^{3}}{\cos x}$

