Related Rates

Def. A rate is the change of a quantity with respect to time.

Ex. Spongebob Squareface is growing so that his edge is increasing at a rate of $.7 \mathrm{~cm} / \mathrm{sec}$. How fast is the area of his face changing when the edge is 3 cm . long?

$$
\begin{gathered}
x=3 \\
\frac{d x}{d t}=.7 \\
\frac{d A}{d t}=?
\end{gathered}
$$

$$
\begin{aligned}
A & =x^{2} \\
\frac{d A}{d t} & =2 x \frac{d x}{d t} \\
& =2(3)(.7) \\
& =4.2 \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

Strategy for Related Rates

 "PGWEDA"P) Draw a picture \longrightarrow Change = variable
G) Identify given information, including rates (derivatives) be in the picture
W) Identify what you want to find
E) Find an equation to relate the variables $\overrightarrow{~ p i c t u r e ~}$
D) Take the derivative with respect to time
A) Plug in values to get your answer

Ex. At noon, two trains leave Carlsbad. Thomas travels north at 65 mph , Percy travels east at 70 mph . Find the rate at which the distance between the trains is changing at 2 pm .

$$
\begin{gathered}
x^{2}+y^{2}=z^{2} \\
2 x \frac{d x}{d t}+2 y \frac{d z}{d t}=2 z \frac{d z}{d t} \\
2(140)(70)+2(130)(65)=2(191.050) \frac{d z}{d t} \\
\frac{d z}{d t}=95.525 \mathrm{mph}
\end{gathered}
$$

$$
\begin{array}{ll}
\frac{d y}{d t}=65 & \frac{\text { at } 2 p m}{y=130} \\
\frac{d x}{d t}=70 & x=140 \\
\begin{array}{ll}
\frac{d z}{d t}=? & \\
&
\end{array} \quad 130^{2}+140^{2}=z^{2} \\
z=191.050
\end{array}
$$

Ex. A spotlight on the ground shines on a building 12 m away. If a man 2 m tall walks from the spotlight toward the building at a speed of $1.6 \mathrm{~m} / \mathrm{s}$, how fast is the length of his shadow on the building decreasing when he is 4 m from the building?

$$
\begin{array}{cc}
x=4 \\
\frac{d x}{d t}=-1.6
\end{array} \quad \frac{d l}{d t}=?
$$

$$
\begin{aligned}
\frac{h}{12} & =\frac{2}{12-x} \\
h & =24(12-x)^{-1} \\
\frac{d h}{d t} & =-24(12-x)^{-2}(-1) \frac{d x}{d t} \\
& =\frac{-24}{(12-4)^{2}}(-1)(-1.6) \\
& =-.6 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

