New seats today, you may sit where you wish.

- Blue part is out of 60
- Green part is out of 140
- Grade is out of 200

Antiderivatives
Ex. Use number lines for f^{\prime} and $f^{\prime \prime}$ to sketch a graph of f with a starting point of $(0,1)$.

Ex. Let $F(x)$ be such that $F^{\prime}(x)=f(x)$. Sketch a graph of $F(x)$.

$F(x)$ is called an antiderivative of $f(x)$.
\rightarrow Notice that antiderivatives are not unique.

Computing Antiderivatives

Ex. Find an antiderivative of $3 x^{2}$.

$$
x^{3}
$$

Ex. Find an antiderivative of x^{5}.

$$
\frac{1}{6} x^{6}
$$

The last answer was $\frac{1}{6} x^{6}$
\rightarrow It could have been $\frac{1}{6} x^{6}+9$ or $\frac{1}{6} x^{6}-58$
To describe all possible answers, we write

$$
\frac{1}{6} x^{6}+c
$$

\rightarrow This is called the general antiderivative.

Pract. Find the general antiderivative of $x^{2}-4$.

$$
\frac{1}{3} x^{3}-4 x+C
$$

Def. The indefinite integral of $f(x)$, written $\int f(x) d x$, is the general antiderivative of $f(x)$.

$$
\underline{\text { Ex. }} \int x^{5} d x=\frac{1}{6} x^{6}+c
$$

"find the integral" requires " $+c$ "
"find an antiderivative" doesn't need " $+c$ "

$$
\int f(x) d x \quad \text { vs. } \quad \int_{\substack{a \\ \text { Definite integral }}}^{b} f(x) d x
$$

Has no endpoints
Is a function
General antiderivative Area under the curve

Integral Rules

$$
\begin{gathered}
\int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x \\
\int c f(x) d x=c \int f(x) d x \\
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c \text { for } n \neq-1
\end{gathered}
$$

$$
\begin{gathered}
\text { Ex. } \int\left(4 x^{2}-x^{3}\right) d x \\
\frac{4}{3} x^{3}-\frac{1}{4} x^{4}+C \\
\text { Ex. } \int\left(5 x^{3}-\left(\frac{2}{x^{2}}\right)+10\right) d x \\
=\frac{5}{4} x^{4}+2 x^{-1}+10 x+C
\end{gathered}
$$

Pract. Find the following in groups:

$$
\begin{aligned}
& \int \sin x d x=-\cos x+c \int \cos x d x=\sin x+c \\
& \int e^{x} d x=e^{x}+c \quad \int \sec ^{2} x d x=\tan x+c \\
& \left.\int \frac{1}{x} d x=\ln |x|+c \quad \int \right\rvert\, d x=x+c
\end{aligned}
$$

Ex. If $f^{\prime}(x)=\frac{1}{x}$ and $f(1)=3$, find $f(x)$.

$$
\begin{gathered}
f(x)=\ln |x|+C \longleftarrow \text { general solution } \\
f(1)=\ln |1|+c=3 \\
c=3
\end{gathered}
$$

$f(x)=\ln |x|+3 \leftarrow$ particular solution

