- Blue part is out of 41
- Green part is out of 62
\rightarrow Total of 103 points possible
\rightarrow Grade is out of 100

Riemann Sums

Goal: Calculate the area under a given curve.
Ex. Find the area under $y=x^{2}+1$ on the interval [0,6].

\rightarrow This means that we want the area going down to the x-axis.

To approximate this area, we will split the region into subintervals, create rectangles, and add the areas of the rectangles.

\rightarrow This is called Riemann sums.

Ex. Approx. the area under $y=x^{2}+1$ on $[0,6]$ using a left-hand
Riemann sum with 3 subintervals.

Ex. Approx. the area under $y=x^{2}+1$ on $[0,6]$ using a right-hand Riemann sum with 3 subintervals.

$$
\begin{aligned}
A & =2 f(2)+2 f(4)+2 f(6) \\
& =2(5)+2(17)+2(37) \\
& =118
\end{aligned}
$$

Ex. For each of the previous examples, did we get an overestimate or an underestimate of the true value? Why?

$$
\left.\begin{array}{l}
\text { LHS } \rightarrow \text { under } \\
\text { RHS } \rightarrow \text { over }
\end{array}\right\} f \text { is inc. }
$$

Ex. The table below gives selected values of $f(x)$. Use these values and a left-hand Riemann sum to approximate the area under the function on the interval $0 \leq x \leq 12$.

x	0	2	3	6	8	9	12
$f(x)$	0	.25	.48	.68	.84	.95	1

$$
\begin{aligned}
A & =2 f(0)+1 f(2)+3 f(3)+2 f(6)+1 f(8)+3 f(9) \\
& =6.74
\end{aligned}
$$

We can get a better approximation by using the midpoint:

Ex. Approx. the area under $y=x^{2}+1$ on $[0,6]$ using a midpoint Riemann sum with 3 subintervals.

$$
\begin{aligned}
A & =2 f(1)+2 f(3)+2 f(5) \\
& =2(2)+2(10)+2(26) \\
& =76
\end{aligned}
$$

We could also use trapezoids:

$$
A=\frac{1}{2}\left(h_{1}+h_{2}\right) b
$$

Ex. Approx. the area under $y=x^{2}+1$ on $[0,6]$ using a trapezoidal Riemann sum with 3 subintervals.

$$
\begin{aligned}
A= & =\frac{1}{2}[f(0)+f(2)] \cdot 2+\frac{1}{2}[f(2)+f(4)] \cdot 2 \\
& +\frac{1}{2}[f(4)+f(6)] \cdot 2 \\
& =(1+5)+(5+17)+(17+37) \\
& =82
\end{aligned}
$$

Ex. For each of the previous examples, did we get an overestimate or an underestimate of the true value? Why?

$$
\left.\begin{array}{r}
\text { mid } \rightarrow \text { under } \\
\text { trap } \rightarrow \text { over }
\end{array}\right\} \text { fcouc. up. }
$$

Ex. Given values in the table, approx. the area under $f(x)$ on $[0,8]$ using midpoint and trapezoidal Riemann sum with 4 subintervals of equal width.

x	0	1	2	3	4	5	6	7	8
$f(x)$	-1	0	3	4	7	9	14	16	20

$$
\begin{aligned}
\text { mid } & =2 f(1)+2 f(3)+2 f(5)+2 f(7)=58 \\
t_{\text {ap }} & =\frac{1}{2}[f(0)+f(2)] 2+\frac{1}{2}[f(2)+f(4)] \cdot 2+\frac{1}{2}[f(4)+f(6)] \cdot 2+\frac{1}{2}[f(6)+f(8)] \cdot 2 \\
& =67
\end{aligned}
$$

