The Definite Integral

Def. The definite integral gives the exact area under the curve.

$$
\int_{a}^{b} f(x) d x=\binom{\text { signed area under } f(x)}{\text { from } x=a \text { to } x=b}
$$

- We've been approximating this with Riemann sums.
- The calculator will evaluate the definite integral for us.

Ex. Set up an integral to find the area under $y=\ln x$ on the interval [1,5], then evaluate it. $\int_{1}^{5} \ln x d x=4.047$

Pract. Set up an integral to find the area under $y=\sin x$ on the interval $[0, \pi]$, then evaluate it. $\int_{0}^{\pi} \sin x d x=2$
\rightarrow If the problem asks for a Riemann sum, you need to do that.

Some integrals can be done using geometry.
Ex. Find the area between the x-axis and $y=\sqrt{9-x^{2}}$

$$
\begin{gathered}
y^{2}=9-x^{2} \\
x^{2}+y^{2}=9
\end{gathered}
$$

$$
\int_{-3}^{3} \sqrt{9-x^{2}} d x=\frac{1}{2} \pi(3)^{2}=\frac{9 \pi}{2}
$$

Ex. $\int_{2}^{7}(x+4) d x=12.5+30=42.5$

Pract. $\int_{1}^{4} 5 d x=15$

$$
\text { Ex. } \int_{-1}^{2}\left(x^{2}-4\right) d x=-9 \rightarrow
$$

Regions under the x-axis count negatively.

Pract. The graph of $f(x)$ is shown below.
Find $\int_{-1}^{4} f(x) d x=4.5-1.5$

Properties of Integrals

$$
\text { i) } \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x
$$

$$
\begin{aligned}
& \text { iii) } \int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x \\
& \text { iv) } \int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x
\end{aligned}
$$

Ex. If $\int_{2}^{6} f(x) d x=19$, find $\int_{2}^{6}[f(x)+5] d x$

$$
\begin{aligned}
\int_{2}^{6}[f(x)+5] d x & =\int_{2}^{6} f(x) d x+\int_{2}^{6} 5 d x \\
& =19+4.5 \\
& =39
\end{aligned}
$$

$$
\text { If } f(t)=\frac{\text { meters }}{\text { seconds }} \text {, then } \int_{a}^{b} f(t) d t=\text { meters }
$$

$$
\begin{aligned}
& \int \text { velocity }=\text { displacement } \\
& \int \text { speed }=\text { dist. travelled }
\end{aligned}
$$

Ex. Let $v(t)=\frac{1}{4} t-1$, find the displacement and distance travelled from $t=0$ to $t=6$.

$$
\begin{aligned}
& \text { disp. }=\int_{0}^{6} v(t) d t=-2+\frac{1}{2}=-1.5 \\
& \text { dist. trav. }=\int_{0}^{6}|v(t)| d t=2+\frac{1}{2}=2.5
\end{aligned}
$$

Ex. Let $v(t)=\cos \left(t^{3}\right)$, find the displacement and distance travelled from $t=0$ to $t=2$.

$$
\begin{aligned}
& \text { disp }=\int_{0}^{2} v(t) d t=.855 \\
& \text { dist. trave. }=\int_{0}^{2}|v(t)| d t=1.497
\end{aligned}
$$

