Warm up Problem

Let $v(t)=5 t-t^{2}$ be the velocity of a particle moving along the x-axis.

1) Find the total distance travelled by the particle from $t=0$ to $t=7$.
2) If $x(0)=1$, find $x(7)$.

FTOC

Thm. Fundamental Theorem of Calculus If $f(x)$ is a continuous function on $[a, b]$, and if $F^{\prime}(x)=f(x)$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

\rightarrow The integral of the rate of change gives the total change.

$$
\int_{a}^{b} g^{\prime}(x) d x=g(b)-g(a)
$$

\rightarrow Ending value is the starting value plus the integral of the rate.

$$
g(b)=g(a)+\int_{a}^{b} g^{\prime}(x) d x
$$

Ex. The rate at which people enter Sea World is given by $E(t)=\frac{15600}{t^{2}-24 t+160}$. How many people entered the park during park hours, 9 am to 5 pm ? (Assume t is hours since midnight.)

$$
\int_{9}^{17} E(t) d t=6004.270
$$

Ex. Let f be a differentiable function for all x, with graph of f^{\prime} shown below. What is a good approximation for the total change of f on $[0,6]$?

$$
\begin{aligned}
& \int_{0}^{6} f^{\prime}(x) d x \\
& =60\left(\frac{1}{2} \cdot 5\right) \\
& =150
\end{aligned}
$$

Ex. For a particle moving along the x-axis, you are given the graph of the velocity below. Assume $x(1)=10$.
a) Find the distance travelled on $[1,7] .=\int^{7}|v(t)| d t=21+30=51$
b) Find $x(7) .=x(1)+\int_{1}^{7} v(t) d t$

$$
\therefore 10+(21-30)=1
$$

A

Ex. The graph of f^{\prime} is given below, with areas indicated. If $f(0)=9$, find the x-coordinate of the point where $f(x)$ has an absolute minimum on $[0,5]$. Justify your answer.

$$
f(0)=9
$$

$$
\begin{aligned}
f(1) & =f(0)+\int_{0}^{1} f^{\prime}(x) d x \\
& =9+(-5)=4 \\
f(2) & =\text { local max. } \\
f(5) & =f(0)+\int_{0}^{5} f^{\prime}(x) d x \\
& =9+(-5+2-17)=-11
\end{aligned}
$$

You must check ALL candidates.

Unit 6 Progress Check: MCQ Part A

- Only do 1-2, 4, 13-15

