Warm up Problems

$$
\begin{aligned}
& \text { 1. } \int_{1}^{5} \frac{1}{x} d x \\
& \text { 2. } \int_{0}^{\pi} \cos x d x \\
& \text { 3. } \int_{0} d t
\end{aligned}
$$

Differential Equations

Def. A differential equation is an equation that involves a function and some of its derivatives.

$$
\text { Ex. } y^{\prime \prime}=3 y^{\prime}-5 y^{2}
$$

Ex. Verify that $x=5$ is a solution to $3 x-2=13$.

$$
3(5)-2=13
$$

Ex. Verify that $y=e^{2 x}$ is a solution to $y^{\prime \prime}-3 y^{\prime}+2 y=0$

$$
\begin{array}{ll}
y^{\prime}=e^{2 x} \cdot 2 & 4 e^{2 x}-3\left(2 e^{2 x}\right)+2 e^{2 x}=0 \\
y^{\prime \prime}=e^{2 x} \cdot 4 & e^{2 x}(4-6+2)=0
\end{array}
$$

Ex. If $y^{\prime}=6 x^{2}-5$, find the general solution.

$$
y=2 x^{3}-5 x+c
$$

A separable equation can be written

$$
\frac{d y}{d x}=f(x) g(y)
$$

\rightarrow To solve, we treat $\frac{d y}{d x}$ as a fraction.
\rightarrow Put the y 's on the left with $d y$, put x 's on the right with $d x$, and integrate each side.

Ex. Let $\frac{d P}{(d t)}=\frac{t^{2}}{2 P^{3} \boldsymbol{y}}$ find the general solution.

$$
\begin{aligned}
& \int P^{3} d P=\int \frac{1}{2} t^{2} d t \\
& \frac{1}{4} p^{4}=\frac{1}{6} t^{3}+C \\
& p^{4}=\frac{2}{3} t^{3}+D \\
& p= \pm \sqrt[4]{\frac{2}{3} t^{3}+D}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{4} p^{4}=\frac{1}{6} t^{3} \\
& p^{4}=\frac{2}{3} t^{3} \\
& p=\sqrt[4]{\frac{2}{3} t^{3}}+C
\end{aligned}
$$

Pract.

$$
\text { 1) } \begin{aligned}
& \frac{d y}{d x}=x^{3}+\sec ^{2} x \\
& \int y=\int\left(x^{3}+\operatorname{cec}^{2} x\right) d x \\
& y=\frac{1}{4} x^{4}+\tan x+C
\end{aligned}
$$

$$
\begin{array}{ll}
\text { 2) } \frac{d R}{d t}=\frac{t^{2}}{R} \\
\int R d R=\int t^{2} d t \\
\frac{1}{2} R^{2}=\frac{1}{3} t^{3}+c
\end{array} \quad \begin{aligned}
& R^{2}=\frac{2}{3} t^{3}+D \\
& R= \pm \sqrt{\frac{2}{3} t^{3}+D} \\
& y^{-2} \frac{d y}{d x}=12 y^{2} \\
& >\frac{1}{y^{2}} d y=12 d x
\end{aligned} \quad \begin{aligned}
-y^{-1} & =12 x+C \\
\frac{1}{y} & =-12 x+D \\
y & =\frac{1}{-12 x+D}
\end{aligned}
$$

Def. An initial value problem (IVP) is a differential equation and a value of the solution.

Ex. Solve the IVP $\frac{d y}{d x}=\frac{1}{x}$ if $y(1)=3$.

$$
\begin{aligned}
& \int d y=\int \frac{1}{x} d x \\
& y=\ln |x|+c \leftarrow \text { general solution } \\
& y(1)=\ln |1|+c=3 \\
& c=3 \\
& y=\ln |x|+3 \leftarrow \text { particular solution }
\end{aligned}
$$

Ex. Solve the IVP $\frac{d P}{d t}=3 P$ if $P(0)=5$.

$$
\begin{gathered}
\begin{array}{c}
\frac{1}{P} d P=\int 3 d t \\
e^{\ln |P|}=3 t+C \\
|P|=e^{3 t} \cdot e^{c} \\
P=D e^{3 t}
\end{array} \quad \therefore P(0)=D e^{0}=5 \\
D=5
\end{gathered} \quad P=5 e^{3 t}
$$

Important: A solution must be a function that is differentiable over the largest interval containing the initial value and satisfying the original differential equation.

Ex. Find the solution to $\frac{d y}{d x}=\frac{x}{y}$ if $y(5)=-3$

$$
\begin{gathered}
\frac{d x}{d x}=\frac{x}{y} \\
\int y d y=\int x d x \\
\frac{1}{2} y^{2}=\frac{1}{2} x^{2}+C \\
y^{2}=x^{2}+D
\end{gathered}
$$

$$
\begin{aligned}
& y= \pm \frac{d x}{y} \begin{array}{l}
\sqrt{x^{2}+D} \\
-3= \pm \sqrt{5^{2}+D} \\
9=25+D \\
D=-16
\end{array} \sqrt{ }, \sqrt[-4]{x^{2}-16} \cup(4, \infty)
\end{aligned}
$$

Slope Fields

Def. A slope field (or direction field) is a diagram that shows the slope of a solution at several points.

Ex. Draw a slope field for $\frac{d y}{d x}=x-y$, then sketch a solution that satisfies $y(0)=0$.

