More Areas

Ex. Find the area of the region bounded by

$$y \neq x^2 - 1$$
, $y = x + 1$, and $x = 4$.

$$x^{2}-1=x+1$$
 $x^{2}-x-2=0$
 $(x-2)(x+1)=0$
 $y=2,-1$

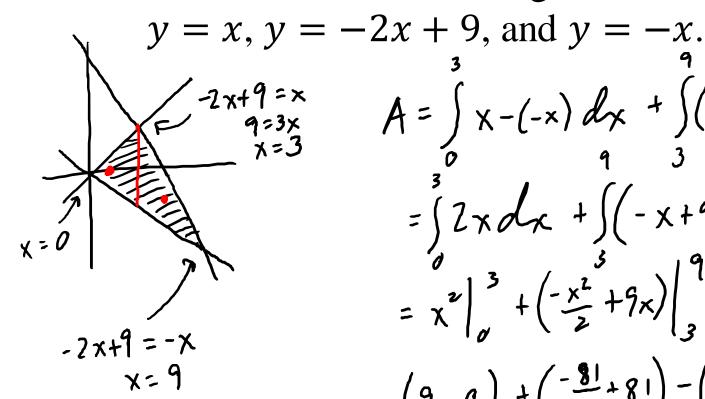
$$A = \int (x+1) - (x^{2}-1) dx + \int (x^{2}-1) - (x+1) dx$$

$$= \int (-x^{2} + x + z) dx + \int (x^{2}-x-2) dx$$

$$= \left[-\frac{1}{3}x^{3} + \frac{1}{3}x^{2} + 2x \right]_{-1}^{2} + \left(\frac{1}{3}x^{3} - \frac{1}{2}x^{2} - 2x \right)_{2}^{1}$$

$$= \left(-\frac{8}{3} + 2 + 4 \right) - \left(\frac{1}{3} + \frac{1}{2} - 2 \right) + \left(\frac{64}{3} - 8 - 8 \right) - \left(\frac{8}{3} - 2 - 4 \right)$$

Ex. Find the area of the region bounded by



$$A = \int_{0}^{3} x - (-x) dx + \int_{0}^{4} (-2x+9) - (-x) dx$$

$$= \int_{0}^{3} 2x dx + \int_{0}^{4} (-x+9) dx$$

$$= x^{2} \Big|_{0}^{3} + \left(-\frac{x^{2}}{2} + 9x\right) \Big|_{3}^{9}$$

$$= (9-0) + \left(-\frac{81}{2} + 81\right) - \left(-\frac{9}{2} + 27\right)$$

Thm. The average value of a function f(x) over the interval [a, b] is

$$\frac{1}{b-a}\int_{a}^{b}f(x)dx$$

Ex. Find the average value of $f(x) = \sin 5x$ on [10,30].

on [10,30].
$$\frac{1}{30-10} \int_{10}^{30} \sin 5x \, dx$$

Ex. The temperature, in ${}^{\circ}C$, of a pond is a function W of time t. The table below shows the temperature at selected times. Approximate the average temperature over the time interval $0 \le t \le 15$ using right-hand sums with 5 subintervals.

4	147(+)	$\frac{1}{15-0} \int_{0}^{15} w(t)dt$
<u> </u>	VV (L)	$\frac{1}{\sqrt{2}}$
$\int 0$	20	(9-0)
<u></u>	31	$=\frac{1}{15}\left[3W(3)+3W(6)+3W(9)+3W(12)+3W(15)\right]$
6	28	
0 3 6 9 12 15	24	== (31+28+24+22+21) °C
F 12	22	5 \ /
L 15	21	

Def. The arc length of a curve on an interval [a, b] is the length of the curve over the interval.

Thm. The arc length, s, of f(x) on [a, b] is given by

$$s = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$$

Ex. Find the length of $y = x^{3/2}$ on [0,5].

Ex. Find the length of
$$y = x^{3/2}$$
 on $[0,5]$.

$$S = \int \int |+ (f')^2 dx = \int \int |+ (\frac{3}{2}x'^4)^2 dx$$

$$= \int \int |+ \frac{3}{4}x dx = \int \int |+ \frac{4}{4}x dx = \int \int |+$$

Ex. Find the length of
$$f(x) = \int_{1}^{x} 2\sqrt{4t^2 + 2t}dt$$
 on [1,2].

$$f'(x) = 2\sqrt{4x^{2}+2x}$$

$$5 = \int \int \frac{1+\left[2\sqrt{4x^{2}+2x}\right]^{2}}{1+\left[2\sqrt{4x^{2}+2x}\right]^{2}}dx = \int \int \frac{1+4\left(4x^{2}+2x\right)}{1+4\left(4x^{2}+2x\right)}dx$$

$$= \int \int \frac{1}{\left[6x^{2}+8x+1\right]}dx = \int \int \frac{1+4\left(4x^{2}+2x\right)}{1+4\left(4x^{2}+2x\right)}dx = \int \frac{1}{\left[4x+1\right]}dx$$

$$= 2x^{2}+x\Big|_{1}^{2} = (8+2)-(2+1)= \boxed{7}$$

Ex. Find the length of $y = \frac{x^3}{6} + \frac{1}{2x}$ on [1,2].

$$y' = \frac{1}{6}x^{3} + \frac{1}{2}x^{-1}$$

$$y' = \frac{1}{2}x^{2} - \frac{1}{2}x^{-2}$$

$$S = \int \int \frac{1}{1 + \left(\frac{1}{2}x^2 - \frac{1}{2}x^{-2}\right)^2} dx$$