- Blue part is out of 30
- Green part is out of 70

Review, Part 1
Derivatives
\rightarrow Remember product, quotient, chain rules Ex. $\frac{d}{d x} \sin (\cos x)=\cos (\cos x)(-\sin x)$

Ex. If $f(x)=\sqrt{4 \sin x+2}$, find $f^{\prime}(0)$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{2}(4 \sin x+2)^{-1 / 2}(4 \cos x) \\
& f^{\prime}(0)=\frac{1}{2}(2)^{-1 / 2}(4)=\frac{2}{\sqrt{2}} \sqrt{2}=\frac{2 \sqrt{2}}{2}=\sqrt{2}
\end{aligned}
$$

$$
\text { Ex. } \begin{aligned}
\frac{d}{d x} x(\ln x)^{2} & =x \cdot 2(\ln x)^{\prime} \cdot \frac{1}{x}+(\ln x)^{2} \cdot 1 \\
& =2 \ln x+(\ln x)^{2} \\
& =\ln x(2+\ln x)
\end{aligned}
$$

Ex. Let f and g be differentiable functions such that $f(1)=$

$$
\begin{aligned}
4, g(1)=3, f^{\prime}(3) & =-5, f^{\prime}(1)=-4, g^{\prime}(1)=-3, \\
g^{\prime}(3)=2 . \text { If } h(x) & =f(g(x)), \text { find } h^{\prime}(1) . \\
h^{\prime}(x) & =f^{\prime}(g(x)) g^{\prime}(x) \\
h^{\prime}(1) & =f^{\prime}(g(1)) g^{\prime}(1) \\
& =f^{\prime}(3) g^{\prime}(1)=(-5)(-3)=15
\end{aligned}
$$

$$
(\sin x)^{2}
$$

Ex. Find all critical points of $f(x)=\sin ^{2} x-\sin x$ on $[0,2 \pi]$.

$$
\begin{aligned}
f^{\prime}(x) & =2 \sin x \cos x-\cos x \\
& =\cos x(2 \sin x-1)=0 \\
& \cos x=0 \quad \sin x=\frac{1}{2} \\
& x=\frac{\pi}{2}, \frac{3 \pi}{2} \quad x=\frac{\pi}{6}, \frac{5 \pi}{6}
\end{aligned}
$$

To differentiate an implicit function, we differentiate term-by-term:

- Take the derivative of x-function as usual.
- The derivative of y-function gets multiplied by y^{\prime}.
- If x 's and y 's are in the same term, use product rule.

After differentiating, solve for y^{\prime}.

Ex. $x^{2}+4 x y^{3}-y^{4}=17$, find the equation of the tangent line at $(1,2)$.

$$
\begin{aligned}
& 2 x+4 x \cdot 3 y^{2} y^{\prime}+y^{3} \cdot 4-4 y^{3} y^{\prime}=0 \\
& 2(1)+4(1) \cdot 3(2)^{2} y^{\prime}+(2)^{3} \cdot 4-4(2)^{3} y^{\prime}=0 \\
& 2+48 y^{\prime}+32-32 y^{\prime}=0 \\
& 16 y^{\prime}=-34 \\
& y^{\prime}=\frac{-17}{8} \quad y-2=\frac{-17}{8}(x-1)
\end{aligned}
$$

Ex. Let $f(x)=x^{3}+x$. If $g(x)=f^{-1}(x)$ and $f(2)=10$, find $g^{\prime}(10)$.

$$
\begin{aligned}
& f=x^{3}+x \quad(2,10) \\
& x=y^{3}+y \quad(10,2) \\
& 1=3 y^{2} y^{\prime}+1 \cdot y^{\prime} \\
& 1=3(2)^{\prime} y^{\prime}+y^{\prime} \\
& 1=13 y^{\prime}
\end{aligned} \quad y^{\prime}=\frac{1}{13}
$$

$$
\begin{aligned}
& f(0)=-8^{2013 \# 4} \\
& f(8)=f^{\prime} \text { pos. before } \\
& f(t)=f^{\prime} \text { pos. before } \\
& f(4)=10 \text { cal max. } \\
& f(6)=-3
\end{aligned}
$$

$$
\begin{aligned}
& g(x)=[f(x)]^{3} \\
& g^{\prime}(x)=3\left[(f(x)]^{2} f^{\prime}(x)\right. \text { mex } \\
& \text { mex }
\end{aligned}
$$

$$
(5,-2)
$$

Graph of f^{\prime}
The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the closed interval $0 \leq x \leq 8$. The graph of f^{\prime} has horizontal tangent lines at $x=1, x=3$, and $x=5$. The areas of the regions between the graph of f^{\prime} and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfie $f(8)=4$.
(a) Find all values of x on the open interval $0<x<8$ for which the function f has a local minimum. Justify your answer. $x=6$, f goes neg. to pos.
(b) Determine the absolute minimum value of f on the closed interval $0 \leq x \leq 8$. Justify your answer. - 8
(c) On what open intervals contained in $0<x<8$ is the graph of f both concave down and increasing?

Explain your reasoning. $(0,1)(3,4)$ f os dec
(d) The function g is defined by $g(x)=(f(x))^{3}$. If $f(3)=-\frac{5}{2}$, find the slope of the line tangent to the graph of g at $x=3$.

