Review, Part 3

Riemann Sums
\rightarrow LHS, RHS, Midpoint, Trapezoid
\rightarrow Don't forget to write the $f(2)+f(3)$ step

t (minutes)	0	1	2	3	4	5	6
$C(t)$ (ounces)	0	5.3	8.8	11.2	12.8	13.8	14.5

Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time $t, 0 \leq t \leq 6$, is given by a differentiable function C, where t is measured in minutes. Selected values of $C(t)$, measured in ounces, are given in the table above.
(a) Use the data in the table to approximate $C^{\prime}(3.5)$. Show the computations that lead to your answer, and indicate units of measure. $\frac{C(4)-C(3)}{4-3}=\frac{12.8-11.2}{1}=1.6 \mathrm{oz} / \mathrm{min}$.
(b) Is there a time $t, 2 \leq t \leq 4$, at which $C^{4}(t)=2$? Justify your answer. $\frac{1(4)-c(2)}{4-2}=\frac{12.8-8.8}{2}=2$
(c) Use a midpoint sum with three subintervals of equal length indicated by the data in the table to approximate the value of $\frac{1}{6} \int_{0}^{6} C(t) d t$. Using correct units, explain the meaning of $\frac{1}{6} \int_{0}^{6} C(t) d t$ in the context of the $A \cup \rho$. amount of problem. $\frac{1}{6} \int_{0}^{6} c(t) d t=\frac{1}{6}[2 c(1)+2 c(3)+2 c(s)]=\frac{1}{6}[2 \cdot 5.3+2 \cdot 11 \cdot 2+2 \cdot 13.8] \quad$ coffee in \quad op, in
(d) The amount of coffee in the cup, in ounces, is modeled by $B(t)=16-16 e^{-0.4 t}$. Using this model, find the $\boldsymbol{t} \boldsymbol{A}=\boldsymbol{G}$ min. rate at which the amount of coffee in the cup is changing when $t=5$.

$$
\begin{aligned}
& B^{\prime}(A)=-16 e^{-.4 t}(-.4) \\
& B^{\prime}(s)=-16 e^{-.4(5)}(-.4)
\end{aligned}
$$

Fundamental Theorem of Calculus

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

The integral of the rate of change gives the total change.

Ex. For a particle moving along the x-axis, you are given the graph of the velocity below. Assume $x(1)=10$.
a) Find the total distance travelled on $[1,7] \cdot \int_{7}^{7}|v(t)| d t=21+30=51$
b) Find $x(7)=x(1)+\int_{1} v(t) d t=10+21-30^{\prime}=1$
c) When is the particle farthest to the left on $[1,7]$?

$$
\begin{aligned}
& x(1)=10 \\
& x(5)=x(1)+\int_{1}^{s} v(t) d t=10+21=31 \\
& x(7)=1
\end{aligned}
$$

$$
t=7
$$

Average Value

$$
\binom{\text { ave. value of }}{f(x) \text { on }[a, b]}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Ex. Find the average value of $f(x)=x^{2} \sqrt{x^{3}+1}$

$$
\begin{gathered}
\frac{1}{2-0} \int_{0}^{2} \frac{x^{2}}{x} \sqrt{x^{3}+1} d x=\frac{1}{2} \int_{7}^{\pi^{*}} u^{1 / 2} \cdot \frac{1}{3} d u=\left.\frac{1}{6} \frac{2}{3} u^{3 / 2}\right|_{*} ^{* *}=\left.\frac{1}{9}\left(x^{3}+1\right)^{3 / 2}\right|_{0} ^{2} \\
\frac{1}{3} d u x^{2} d x \\
\frac{1}{3}=x^{2} d x
\end{gathered}
$$

Remember:

$$
\begin{aligned}
& \binom{\text { ave. value of }}{f(x) \text { on }[a, b]}=\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& \binom{\text { ave. rate of change }}{\text { from } t=a \text { to } t=b}=\frac{f(b)-f(a)}{b-a}
\end{aligned}
$$

Consider the differential equation $\frac{d y}{d x}=e^{y}\left(3 x^{2}-6 x\right)$. Let $y=f(x)$ be the particular solution to the differential equation that passes through $(1,0)$.
(a) Write an equation for the line tangent to the graph of f at the point $(1,0)$. Use the tangent line to approximate $f(1.2)$.
(b) Find $y=f(x)$, the particular solution to the differential equation that passes through $(1,0)$.
a) $\left.\frac{d x}{d x}\right|_{(1,0)}=e^{0\left(3.1^{2}-6 \cdot 1\right)}=-3$

$$
y-0=-3(x-1)
$$

$$
f(1.2) \approx-3(1.2-1)=-.6
$$

$$
\begin{aligned}
& \text { b) } \frac{d y}{d x}=e^{y}\left(3 x^{2}-6 x\right) \\
& \int e^{-y} d y=\int\left(3 x^{2}-6 x\right) d x \\
& -e^{-y}=x^{3}-3 x^{2}+c
\end{aligned}
$$

$$
\begin{aligned}
& e^{-y}=-x^{3}+3 x^{2}+D \\
& -y=\ln \left(-x^{3}+3 x^{2}+D\right) \\
& y=-\ln \left(-x^{3}+3 x^{2}+D\right) \\
& 0=-\ln (-1+3+D) \\
& e^{0}=2+D \rightarrow D=-1
\end{aligned}
$$

$\underline{\text { Slope Fields }}$

Ex. Consider $\frac{d y}{d x}=x(y-1)^{2}$
Sketch a slope field at the points indicated

Ex. Let f be the continuous function whose graph is shown.
Let g be the function $g(x)=\int_{2}^{x} f(t) d t$
a) Find $g(2)=\int_{1}^{2} f(t) d t=-\frac{1}{2}(1)\left(\frac{1}{2}\right)^{1}=-\frac{1}{4}$
b) Find $g^{\prime}(-3)$.

$$
\begin{aligned}
& g^{\prime}(x)=f(x) \\
& g^{\prime}(-3)=f(-3)=2
\end{aligned}
$$

Graph of f
c) Find $g^{\prime \prime}(-3)$.

$$
\begin{aligned}
& g^{\prime \prime}(x)=f^{\prime}(x) \\
& g^{\prime \prime}(-3)=f^{\prime}(-3)=1
\end{aligned}
$$

