Review, Part 4

Piecewise Functions
\rightarrow Equation depends on your value of x
Ex. Let $g(x)=\left\{\begin{array}{cc}x^{4}-3 & x<1 \\ 2 & 1 \leq x \leq 3 \\ x-1 & x>3\end{array}\right.$
a. Find $g(-2)=(-2)^{4}-3$
$=16-3$
$=13$

Piecewise Functions
\rightarrow Equation depends on your value of x
Ex. Let $g(x)=\left\{\begin{array}{cc}x^{4}-3 & x<1 \\ 2 & 1 \leq x \leq 3 \\ x-1 & x>3\end{array}\right.$ b Find $\int_{-4}^{4} g(x) d x=\int_{-4}^{1}\left(x^{4}-3\right) d x+\int_{1}^{3} 2 d x+\int_{3}^{4}(x-1) d x$

$$
\begin{aligned}
& =\frac{1}{5} x^{5}-\left.3 x\right|_{-4} ^{1}+\left.2 x\right|_{1} ^{3}+\frac{1}{2} x^{2}-\left.x\right|_{3} ^{4} \\
& =\left(\frac{1}{5}-3\right)-\left(\frac{1}{5}(-4)^{5}+12\right)+6-2+(8-4)-\left(\frac{9}{2}-3\right)
\end{aligned}
$$

Piecewise Functions
\rightarrow Equation depends on your value of x
Ex. Let $g(x)=\left\{\begin{array}{cc}x^{4}-3 & x<1 \\ 2 & 1 \leq x \leq 3 \\ x-1 & x>3\end{array}\right.$
c Find $\lim _{x \rightarrow 3} g(x)=2$

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} g(x)=\lim _{x \rightarrow 3^{+}}(x-1)=2 \\
& \lim _{x \rightarrow 3^{-}} g(x)=\lim _{x \rightarrow 3^{-}} 2=2
\end{aligned}
$$

SAMPLE A
Consider the differential equation $\frac{d y}{d x}=3 x+2 y+1$.

$$
\begin{aligned}
y^{\prime \prime} y^{\prime} & =3 x+2 y+1 \\
y^{\prime \prime} & =3+2 y^{\prime} \\
y^{\prime \prime} & =3+2(3 x+2 y+1)
\end{aligned}
$$

$\lim _{x \rightarrow 2^{+}}$means that x approaches 2 $\underset{\substack{x \rightarrow 2^{+} \\ \text {from the right (larger than 2) } \\ \hline}}{ }$
$\lim _{x \rightarrow 2^{-}}$means that x approaches 2 from the left (smaller than 2)

I							II				
x	10	10.9	10.99	10.999	11.001	11.01	11.1	12			
$f(x)$	29	31.7	31.97	31.997	32.003	32.03	32.3	35			

The table above gives function f at selected values of x. Which of the following co clusions is supported by the data in the table?
(A) $\lim _{x \rightarrow 11} f(x)=32$
(B) $\lim _{x \rightarrow 11} f(x)=\infty$
$\lim _{x \rightarrow 32} f(x)=11$
$\lim _{x \rightarrow 32} f(x)=\infty$

The table above gives values of the function f at selected values of x. Which of the following conclusions is supported by the data in the table? $\lim _{x \rightarrow 2} f(x)=-1$

C) $\lim _{x \rightarrow 2^{-}} f(x)=-1$ and $\lim _{x \rightarrow 2^{+}} f(x)=6$
(D) $\lim _{x \rightarrow 2^{-}} f(x)=6$ and $\lim _{x \rightarrow 2^{+}} f(x)=-1$

Def. A function $f(x)$ is continuous on an

 interval if, for all points c on the interval:i. $\lim _{x \rightarrow c} f(x)$ exists
ii. $f(c)$ exists
iii. $\lim _{x \rightarrow c} f(x)=f(c)$

Def. A function $f(x)$ is differentiable on an interval if $f(x)$ and $f^{\prime}(x)$ are continuous on the interval.

Asymptotes
Vertical: any point where function is undefined (and can't be removed) $\rightarrow \lim _{x \rightarrow a} f(x)=\infty$ Horizontal: $\lim _{x \rightarrow \infty} f(x)=L$

Ex. Find all asymptotes of $y=\frac{x}{x^{2}-4}$
V.a. $x^{2}-4=0$

$$
x= \pm 2
$$

$$
\begin{aligned}
& x= \pm 2 \\
& \lim _{x \rightarrow 2} \frac{x}{x^{2}-4}=\frac{2}{0}=\infty \quad x=2 \\
& \lim _{x \rightarrow 2} \frac{x}{x^{2}-4}=\frac{-2}{0}=\infty \quad x=-2
\end{aligned}
$$

ha.

$$
\begin{aligned}
& \text { a. } \lim _{x \rightarrow \infty} \frac{x}{x^{2}-4}=\lim _{x \rightarrow \infty} \frac{x}{x^{2}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{x}=0
\end{aligned}
$$

Summary

For a horizontal asymptote,

$$
x \rightarrow \infty \text { and } f(x) \rightarrow \text { finite }
$$

For a vertical asymptote,

$$
x \rightarrow \text { finite and } f(x) \rightarrow \infty
$$

Tangent Line

$$
y=m x+b \quad[\text { slope }=\text { derivative at the point }]
$$

$$
y-y_{1}=m\left(x-x_{1}\right) \quad[\text { slope }=\text { derivative at the point }]
$$

$$
y=f(a)+f^{\prime}(a)(x-a) \quad[\text { tangent line at } x=a]
$$

Linear Approximation
Ex. Let f be a function such that $f(3)=2$ and $f^{\prime}(3)=5$. Approximate a zero of f.

$$
\begin{array}{r}
f(x) \approx f(3)+f^{\prime}(3)(x-3) \\
f(x) \approx 2+5(x-3)=0 \\
5 x-13=0 \\
x=\frac{13}{5}
\end{array}
$$

A particle moves along a straight line. For $0 \leq t \leq 5$, the velocity of the particle is given by $v(t)=-2+\left(t^{2}+3 t\right)^{6 / 5}-t^{3}$, and the position of the particle is given by $s(t)$. It is known that $s(0)=10$.
(a) Find all values of t in the interval $2 \leq t \leq 4$ for which the speed of the particle is 2 .
(b) Write an expression involving an integral that gives the position $s(t)$. Use this expression to find the position of the particle at time $t=5$.
(c) Find all times t in the interval $0 \leq t \leq 5$ at which the particle changes direction. Justify your answer.
(d) Is the speed of the particle increasing or decreasing at time $t=4$? Give a reason for your answer.

$$
\text { a) } \begin{aligned}
|v(t)| & =2 \\
t & =3.128,3.473
\end{aligned}
$$

c) $v(t)=0$

$$
t=536,3.318
$$

$v(t)$ changes signs
at these times

$$
\text { b) } \begin{aligned}
A(s) & =a(0)+\int_{0}^{5} v(t) d t=-9.207 \\
A(t) & =a(0)+\int_{0}^{t} v(x) d x
\end{aligned}
$$

$$
\text { d) } \begin{aligned}
v(4) & =-11.476 \\
a(4) & =-22.246
\end{aligned}
$$

speed inc.
because v(u)

$$
\text { and a }(4) \text { are }
$$

same sign

