Review, Part 4

Piecewise Functions

 \rightarrow Equation depends on your value of x

Ex. Let
$$g(x) = \begin{cases} x^4 - 3 & x < 1 \\ 2 & 1 \le x \le 3 \\ x - 1 & x > 3 \end{cases}$$

a. Find $g(-2) = (-2)^4 - 3 = 16 - 3 = 16 - 3 = 13$

Piecewise Functions

 \rightarrow Equation depends on your value of x

Ex. Let
$$g(x) = \begin{cases} x^4 - 3 & x < 1 \\ 2 & 1 \le x \le 3 \\ x - 1 & x > 3 \end{cases}$$

b **s**. Find $\int_{-4}^{4} g(x) dx = \int_{1}^{4} (x^{4} - 3) dx + \int_{2}^{4} 2 dx + \int_{3}^{4} (x - 1) dx$
 $= \frac{1}{5} x^{5} - 3 x \Big|_{-4}^{1} + 2 x \Big|_{1}^{3} + \frac{1}{2} x^{2} - x \Big|_{3}^{4}$
 $: (\frac{1}{5} - 3) - (\frac{1}{5} (-4)^{5} + 12) + (-2 + (8 - 4)) - (\frac{9}{2} - 3)$

N

Piecewise Functions

 \rightarrow Equation depends on your value of x

Ex. Let
$$g(x) = \begin{cases} x^4 - 3 & x < 1 \\ 2 & 1 \le x \le 3 \longleftarrow \\ x - 1 & x > 3 \end{cases}$$

C in Find
$$\lim_{x \to 3} g(x) = 2$$

 $\lim_{x \to 3} g(x) = \lim_{x \to 3^+} (x-1) = 2$
 $\lim_{x \to 3^+} g(x) = \lim_{x \to 3^+} (x-1) = 2$
 $\lim_{x \to 3^+} g(x) = \lim_{x \to 3^-} 2 = 2$
 $\lim_{x \to 3^-} g(x) = \lim_{x \to 3^-} 2 = 2$

SAMPLE A

Consider the differential equation $\frac{dy}{dx} = 3x + 2y + 1$. (a) Find $\frac{d^2y}{dx^2}$ in terms of x and y. y'' = 3x + 2y + 1y'' = 3 + 2y'y'' = 3 + 2(3x + 2y + 1)

,

 $\lim_{x\to 2^+} \text{ means that } x \text{ approaches } 2$ from the right (larger than 2)

 $\lim_{x\to 2^-} \text{ means that } x \text{ approaches } 2$ from the left (smaller than 2)

		_	//		F				
x	10	10.9	10.99	10.999	11.001	11.01	11.1	12	
f(x)	29	31.7	31.97	31.997	32.003	32.03	32.3	35	

Л

The table above gives values of the function f at selected values of x. Which of the following conclusions is supported by the data in the table?

	4 .2						2			
x	1	1.9	1.99	1.999	1.9999	2.0001	2.001	2.01	2.1	3
f(x)	-4	-1.399	-1.040	-1.004	-1.000	6.001	6.012	6.121	7.261	25

- |

The table above gives values of the function f at selected values of x. Which of the following conclusions is supported by the data in the table? 6

<u>Def.</u> A function f(x) is <u>continuous</u> on an interval if, for all points c on the interval:

- i. $\lim_{x \to c} f(x)$ exists
- ii. f(c) exists

iii.
$$\lim_{x \to c} f(x) = f(c)$$

<u>Def.</u> A function f(x) is <u>differentiable</u> on an interval if f(x) and f'(x) are continuous on the interval.

Asymptotes

Summary For a horizontal asymptote, $x \to \infty$ and $f(x) \to$ finite

For a vertical asymptote, $x \rightarrow$ finite and $f(x) \rightarrow \infty$ Tangent Line

$$y = mx + b$$
 [slope = derivative at the point]

 $y - y_1 = m(x - x_1)$ [slope = derivative at the point]

$$y = f(a) + f'(a)(x - a)$$
 [tangent line at $x = a$]

Linear Approximation

Ex. Let f be a function such that f(3) = 2 and f'(3) = 5. Approximate a zero of f.

$$f(x) \approx f(3) + f'(3)(x-3)$$

$$f(x) \approx 2 + 5(x-3) = 0$$

$$5x - 13 = 0$$

$$x = \frac{13}{5}$$

2013 #2

A particle moves along a straight line. For $0 \le t \le 5$, the velocity of the particle is given by

 $v(t) = -2 + (t^2 + 3t)^{6/5} - t^3$, and the position of the particle is given by s(t). It is known that s(0) = 10.

- (a) Find all values of t in the interval $2 \le t \le 4$ for which the speed of the particle is 2.
- (b) Write an expression involving an integral that gives the position s(t). Use this expression to find the position of the particle at time t = 5.
- (c) Find all times t in the interval $0 \le t \le 5$ at which the particle changes direction. Justify your answer.
- (d) Is the speed of the particle increasing or decreasing at time t = 4? Give a reason for your answer.

a)
$$|v(t)| = 2$$

 $t = 3.128, 3.473$
c) $v(t) = 0$
 $t = .536, 3.318$
 $v(t) = a(0) + \int v(t) dt = -9.207$
 $A(t) = a(0) + \int v(t) dx$
 $d) v(4) = -(1.476)$ speed inc.
 $a(4) = -22.246$ because $v(4)$
 $a(4) = -22.246$ because $v(4)$