Name	
Period	

Calculus AB -- Chapter 1/2 Sample Test (calculators allowed)

Show all work for free-response questions.

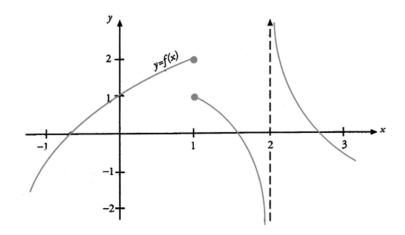
1.
$$\lim_{x \to \infty} \frac{x^3 - 2x^2 + 3x - 4}{4x^3 - 3x^2 + 2x - 1} =$$
(A) 4 (B) 1 (C) $\frac{1}{4}$ (D) 0 (E) -1

2. If y = 7 is a horizontal asymptote of a rational function f, then which of the following must be true?

(A)
$$\lim_{x \to 7} f(x) = \infty$$
 (B) $\lim_{x \to \infty} f(x) = 7$ (C) $\lim_{x \to 0} f(x) = 7$
(D) $\lim_{x \to 7} f(x) = 0$ (E) $\lim_{x \to \infty} f(x) = -7$

3. A bacteria population starts with 30 bacteria and doubles every 6 hours.

a) Assuming exponential growth, find a model for P(t), the population of the bacteria after t hours.


b) What is the size of the population after 15 hours? Round to the nearest whole number.

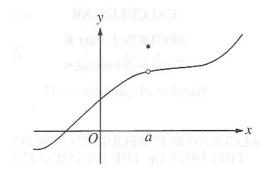
4. A sample of an isotope has mass 8g. If the half-life of the isotope is 15 hours, find the time required for the mass to be reduced to 0.1g.

5. Evaluate the limits

a)
$$\lim_{x \to 0} \frac{\tan 6x - 6x}{x^3}$$

b)
$$\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x - 2}$$

6. The graph of a function f is shown above. Evaluate each of the following limits.


i.
$$\lim_{x \to 2^+} f(x) =$$

- ii. $\lim_{x \to l^-} f(x) =$
- iii. $\lim_{x \to 1^+} f(x) =$
- iv. $\lim_{x \to 2^-} f(x) =$
- v. $\lim_{x \to 0} f(x) =$

Name	
Period	

Calculus AB -- Chapter 1/2 Sample Test (no calculators)

Show all work for free-response questions. 1.

The graph of a function f is shown above. Which of the statements about f is true?

- (A) f is continuous at x = a.
- (B) f is discontinuous at x = a because $\lim_{x \to a} f(x)$ does not exist.
- (C) f is discontinuous at x = a because f(a) does not exist.
- (D) f is discontinuous at x = a because $\lim_{x \to a} f(x) \neq f(a)$.

2. Find (and simplify) the equation for the function $(f \circ g)(x)$ if $f(x) = \frac{x-1}{x}$ and $g(x) = \frac{x}{x+2}$.

3. For the function $f(x) = x^2 - 8x + 11$, evaluate $(f \circ f)(7)$.

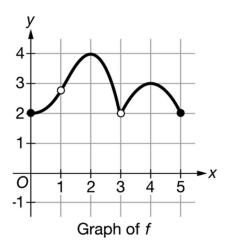
4. For the function
$$f(x) = \begin{cases} 1-2\sin x & x \le 0 \\ e^{-4x} & x > 0 \end{cases}$$
, evaluate $\lim_{x \to 0} f(x)$.

- 5. A rectangular box has a square base, no lid, and volume 7 m³. Express the surface area of the box as a function S(x) of the length x of a side of the base.
- 6. Solve for x.

a)
$$\log_{10}(x+1) = 4$$

b)
$$2^x = 5e^{x+1}$$

c)
$$4^{3x-1} = \frac{1}{\sqrt{2}}$$


- 7. Consider the function $y = \frac{x^2 1}{x^2 2x 3}$. Find the following, showing all appropriate limits.
 - a) Find the equation of all horizontal asymptotes.
 - b) Find the equation of all vertical asymptotes.
 - c) Find the coordinates of all removable discontinuities.

8. Evaluate
$$\sin\left(\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)$$
.

- 9. Express $4 \ln 2 \frac{2}{3} \ln(x+4)$ as a single logarithm.
- 10. Evaluate $\lim_{x \to -3} \frac{x^2 + 4x + 3}{x + 3}$.
- 11. Determine what can be said about the graph of the function if the limit is true.

a)
$$\lim_{x \to 7} f(x) = \infty$$

b) $\lim_{x \to 7} g(x) = g(7)$
c) $\lim_{x \to \infty} h(x) = 7$

- 12. How would you define f(2) in order to make $f(x) = \frac{x^2 3x + 2}{x 2}$ continuous at x = 2?
- 13. Consider the function $f(x) = \begin{cases} cx + 9 & x \le 2\\ cx^2 3 & x > 2 \end{cases}$ Find the value of *c* so that f(x) is continuous for all real numbers. Show all work, including limits, that lead you to your answer.

14. The graph of the functions f is shown above on the interval $0 \le x \le 5$. Evaluate $\lim_{x \to 3} e^{f(x)-1}$ or explain why the limit doesn't exist.

x	0.995	0.996	0.997	0.998	0.999	1	1.001	1.002	1.003	1.004	1.005
f(x)	2.631	2.628	2.626	2.623	2.621	Undefined	2.615	2.613	2.610	2.607	2.605

15. Values of f at selected values of x are given in the table above.

a) Based on values from the table, what is a reasonable estimate for $\lim_{x\to 1} f(x)$?

b) The function is undefined at x = 1. What type of discontinuity does the function have at this point? Give a reason for your answer.