Period _____

Calculus AB -- Chapter 3B Sample Test (Calculators Allowed)

Show all work for free-response questions.

1. If f and g are twice differentiable functions and if h(x) = f(x)g(x), find h''(x).

2. A particle moves along the x-axis such that its position, for t ≥ 0, is given by x(t) = 2t³ - 21t² + 36t.
a. Find all times when the particle changes directions. Justify your answer.

b. Is the particle moving left or right at t = 5? Justify your answer.

c. Find *a*(5).

d. Is the speed of the particle increasing or decreasing at t = 5? Justify your answer.

			Name Period			
Calculus AB Chapter 3B Sample Test (No Calculators)						
Show all work for free	e-response questions.					
1. If $f(x) = \sqrt{4\sin x}$	$\overline{+2}$, then $f'(0) =$					
(A) -2	(B) 0	(C) $\sqrt{2}$	(D) $\frac{\sqrt{2}}{2}$	(E) 1		
2. If $x^2 + xy = 10$, the	en when $x = 2$, $\frac{dy}{dx} =$					
$(A) - \frac{7}{2}$	(B) -2	(C) $\frac{2}{7}$	(D) $\frac{3}{2}$	(E) $\frac{7}{2}$		

- 3. Let f be the function defined by $f(x) = x^3 + x$. If $g(x) = f^{-1}(x)$ and g(2) = 1, what is the value of g'(2)?
 - (A) $\frac{1}{13}$ (B) $\frac{1}{4}$ (C) $\frac{7}{4}$
 - (D) 4 (E) 13

- 4. Let f be the function given by $f(x) = 2xe^x$. The graph of f is concave down when
 - (A) x < -2 (B) x > -2 (C) x < -1
 - (D) x > -1 (E) x < 0

5. $\frac{d}{dx}(e^{3\ln x}) =$

(A)
$$e^{3\ln x}$$
 (B) $\frac{e^{3\ln x}}{x}$ (C) x^3 (D) $3x^2$ (E) 3

- 6. A particle moves along the y-axis such that its position is given by $y(t) = (t^2 3)e^{-t}$. What are all values of t for which the particle is moving upward?
 - (A) There are no values(B) t < -1 and t > 3(C) -3 < t < 1(D) -1 < t < 3(E) All values of t
- 7. What is the slope of the line tangent to the curve $3y^2 2x^2 = 6 2xy$ at the point (3,2)?
 - (A) 0 (B) $\frac{4}{9}$ (C) $\frac{7}{9}$ (D) $\frac{6}{7}$ (E) $\frac{5}{3}$
- 8. A particle moves along the x-axis so that at time $t \ge 0$ its position is given by $x(t) = 2t^3 21t^2 + 72t 53$. At what time t is the particle at rest?
 - (A) t = 1 only (B) t = 3 only (C) $t = \frac{7}{2}$ only (D) t = 3 and $t = \frac{7}{2}$ (E) t = 3 and t = 4
- 9. Find the equation of the line tangent to the graph of $y = \frac{e^{-7x}}{x^7+1}$ at the point where x = 0.
 - (A) y = -7x + 1 (B) y = 7x + 1
 - (C) y = x + 1 (D) y = -7x

10. Find the derivative of the function $f(x) = \frac{1 + \cos 3x}{1 - \cos 3x}$.

(A)
$$f'(x) = \frac{6 \sin 3x}{(1 - \cos 3x)^2}$$

(B) $f'(x) = \frac{-6 \sin x}{(1 - \cos 3x)^2}$
(B) $f'(x) = \frac{-6 \sin x}{(1 - \cos 3x)^2}$
(B) $f'(x) = \frac{2 \sin 3x}{(1 - \cos 3x)^2}$

x	2	3	4
f(x)	1	2	6
f'(x)	4	5	3

11. The table above gives values of the differentiable function f and its derivative at selected values of x. If g is the inverse function of f, which of the following is the equation of the line tangent to the graph of g at the point where x = 2?

(A)
$$y = -\frac{1}{5}(x-2) + 3$$

(B) $y = -\frac{1}{4}(x-2) + 1$
(C) $y = \frac{1}{5}(x-2) + 3$
(D) $y = 4(x-2) + 1$

12. For any real number x,
$$\lim_{h \to 0} \frac{\sin(2(x+h)) - \sin(2x)}{h} =$$

(A) 0 (B) 1 (C) $\cos(2x)$ (D) $2\cos(2x)$

13. Consider the function $f(x) = \sin^{-1}\left(\frac{x}{2}\right)$.

a. Find the equation of the tangent line at x = 1.

b. Use your answer from Part a to approximate the value of f(1.2).

- 14. A particle moves along the *x*-axis in such a way that its position at time *t* is given by $x(t) = \frac{1-t}{1+t}$.
 - a. What is the acceleration of the particle at time t = 0?

b. Is the speed of the particle increasing or decreasing at time t = 0? Justify your answer.

15. Let f(x) and g(x) be functions with values given in the table. Use the information to answer the questions that follow.

x	f(x)	f'(x)	g(x)	g'(x)
0	1	-1	2	5
1	-1	2	4	0
2	7	3	11	0.5

a. If
$$H(x) = e^{f(x)} + \pi x$$
, find $H'(0)$.

b. If
$$J(x) = [f(x)]^2$$
, find $J'(1)$.

c. If K(x) = f(g(x)), find K'(0).

- 16. Consider the curve defined by $4x^2 + 3y^2 + 6y = 9$.
 - a. Find $\frac{dy}{dx}$ in terms of x and y.

b. Find $\frac{d^2y}{dx^2}$ in terms of x and y.

c. Find all values of x at which the curve has a vertical tangent line.