\qquad
\qquad

Calculus AB -- Chapter 3B Sample Test (Calculators Allowed)

Show all work for free-response questions.

1. If f and g are twice differentiable functions and if $h(x)=f(x) g(x)$, find $h^{\prime \prime}(x)$.
2. A particle moves along the x-axis such that its position, for $t \geq 0$, is given by $x(t)=2 t^{3}-21 t^{2}+36 t$.
a. Find all times when the particle changes directions. Justify your answer.
b. Is the particle moving left or right at $t=5$? Justify your answer.
c. Find a (5).
d. Is the speed of the particle increasing or decreasing at $t=5$? Justify your answer.
\qquad
\qquad

Calculus AB -- Chapter 3B Sample Test (No Calculators)

Show all work for free-response questions.

1. If $f(x)=\sqrt{4 \sin x+2}$, then $f^{\prime}(0)=$
(A) -2
(B) 0
(C) $\sqrt{2}$
(D) $\frac{\sqrt{2}}{2}$
(E) 1
2. If $x^{2}+x y=10$, then when $x=2, \frac{d y}{d x}=$
(A) $-\frac{7}{2}$
(B) -2
(C) $\frac{2}{7}$
(D) $\frac{3}{2}$
(E) $\frac{7}{2}$
3. Let f be the function defined by $f(x)=x^{3}+x$. If $g(x)=f^{-1}(x)$ and $g(2)=1$, what is the value of $g^{\prime}(2)$?
(A) $\frac{1}{13}$
(B) $\frac{1}{4}$
(C) $\frac{7}{4}$
(D) 4
(E) 13
4. Let f be the function given by $f(x)=2 x e^{x}$. The graph of f is concave down when
(A) $x<-2$
(B) $x>-2$
(C) $x<-1$
(D) $x>-1$
(E) $x<0$
5. $\frac{d}{d x}\left(e^{3 \ln x}\right)=$
(A) $e^{3 \ln x}$
(B) $\frac{e^{3 \ln x}}{x}$
(C) x^{3}
(D) $3 x^{2}$
(E) 3
6. A particle moves along the y-axis such that its position is given by $y(t)=\left(t^{2}-3\right) e^{-t}$. What are all values of t for which the particle is moving upward?
(A) There are no values
(B) $t<-1$ and $t>3$
(C) $-3<t<1$
(D) $-1<t<3$
(E) All values of t
7. What is the slope of the line tangent to the curve $3 y^{2}-2 x^{2}=6-2 x y$ at the point $(3,2)$?
(A) 0
(B) $\frac{4}{9}$
(C) $\frac{7}{9}$
(D) $\frac{6}{7}$
(E) $\frac{5}{3}$
8. A particle moves along the x-axis so that at time $t \geq 0$ its position is given by $x(t)=2 t^{3}-21 t^{2}+72 t-53$. At what time t is the particle at rest?
(A) $t=1$ only
(B) $t=3$ only
(C) $t=\frac{7}{2}$ only
(D) $t=3$ and $t=\frac{7}{2}$
(E) $t=3$ and $t=4$
9. Find the equation of the line tangent to the graph of $y=\frac{e^{-7 x}}{x^{7}+1}$ at the point where $x=0$.
(A) $y=-7 x+1$
(B) $y=7 x+1$
(C) $y=x+1$
(D) $y=-7 x$
10. Find the derivative of the function $f(x)=\frac{1+\cos 3 x}{1-\cos 3 x}$.
(A) $f^{\prime}(x)=\frac{6 \sin 3 x}{(1-\cos 3 x)^{2}}$
(B) $f^{\prime}(x)=\frac{-6 \sin }{(1-\cos)^{2}}$
(C) $f^{\prime}(x)=\frac{-2 \sin }{(1-\cos 3 x)^{2}}$
(D) $f^{\prime}(x)=\frac{2 \sin 3 x}{(1-\cos 3 x)^{2}}$

x	2	3	4
$f(x)$	1	2	6
$f^{\prime}(x)$	4	5	3

11. The table above gives values of the differentiable function f and its derivative at selected values of x. If g is the inverse function of f, which of the following is the equation of the line tangent to the graph of g at the point where $x=2$?
(A) $y=-\frac{1}{5}(x-2)+3$
(B) $y=-\frac{1}{4}(x-2)+1$
(C) $y=\frac{1}{5}(x-2)+3$
(D) $y=4(x-2)+1$
12. For any real number $x, \lim _{h \rightarrow 0} \frac{\sin (2(x+h))-\text { si }(2 x)}{h}=$
(A) 0
(B) 1
(C) $\cos (2 x)$
(D) $2 \cos (2 x)$
13. Consider the function $f(x)=\sin ^{-1}\left(\frac{x}{2}\right)$.
a. Find the equation of the tangent line at $x=1$.
b. Use your answer from Part a to approximate the value of $f(1.2)$.

Calculus AB -- Chapter 3B Sample Test (No Calculators)

14. A particle moves along the x-axis in such a way that its position at time t is given by $x(t)=\frac{1-t}{1+t}$.
a. What is the acceleration of the particle at time $t=0$?
b. Is the speed of the particle increasing or decreasing at time $t=0$? Justify your answer.
15. Let $f(x)$ and $g(x)$ be functions with values given in the table. Use the information to answer the questions that follow.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	1	-1	2	5
1	-1	2	4	0
2	7	3	11	0.5

a. If $H(x)=e^{f(x)}+\pi x$, find $H^{\prime}(0)$.
b. If $J(x)=[f(x)]^{2}$, find $J^{\prime}(1)$.
c. If $K(x)=f(g(x))$, find $K^{\prime}(0)$.
16. Consider the curve defined by $4 x^{2}+3 y^{2}+6 y=9$.
a. Find $\frac{d y}{d x}$ in terms of x and y.
b. Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y.
c. Find all values of x at which the curve has a vertical tangent line.

