\qquad
Period \qquad

Calculus AB - Chapter 5B Sample Test (calculators allowed)

Show all work for free-response questions.

1. Let $F(x)$ be an antiderivative of $\frac{(\ln x)^{3}}{x}$. If $F(1)=0$, then $F(9)=$
(A) 0.048
(B) 0.144
(C) 5.827
(D) 23.308
(E) 1640.250
2. Find the derivative of the function $\int_{x}^{x^{9}} \ln t d t$.
(A) $x\left(x^{8}-1\right) \ln x$
(B) $\left(81 x^{8}-1\right) \ln x$
(C) $8 \ln x$
(D) $\frac{9}{x}$
3. $\int_{0}^{x} \sin t d t$
(A) $\sin x$
(B) $-\cos x$
(C) $\cos x$
(D) $\cos x-1$ (E) $1-\cos x$
4. Let $f(x)$ be the function that is defined for all real numbers x and that has the following properties:
(i) $f^{\prime \prime}(x)=24 x-18$
(ii) $f^{\prime}(1)=-6$
(iii) $f(2)=0$

Find an expression for $f(x)$.

Name \qquad
Period \qquad

Calculus AB - Chapter 5B Sample Test (no calculators)

Show all work for free-response questions.

1. If $f^{\prime}(x)=3 x^{2}$ and $f(-1)=2$, then $\int_{0}^{2} f(x)=$
(A) $\frac{8}{3}$
(B) 4
(C) 7
(D) 10
(E) 28

2. Shown above is a slope field for which of the following differential equations?
(A) $\frac{d y}{d x}=1+x$
(B) $\frac{d y}{d x}=x^{2}$
(C) $\frac{d y}{d x}=x+y$
(D) $\frac{d y}{d x}=\frac{x}{y}$
(E) $\frac{d y}{d x}=\ln y$
3. The temperature of a solid at time $t \geq 0$ is modeled by the nonconstant function H and increases according to the differential equation $\frac{d H}{d t}=2 H+1$, where $H(t)$ is measured in degrees Fahrenheit and t is measured in hours. Which of the following much be true?
(A) $H=H^{2}+t+C$
(B) $\ln |2 H+1|=\frac{t}{2}+C$
(C) $\ln |2 H+1|=t+C$
(D) $\ln |2 H+1|=2 t+C$
4. If $f(x)$ is a continuous function and if $F^{\prime}(x)=f(x)$ for all real numbers x, then $\int_{1}^{3} f(2 x) d x=$
(A) $2 F(3)-2 F(1)$
(B) $\frac{1}{2} F(3)-\frac{1}{2} F(1)$
(C) $2 F(6)-2 F(2)$
(D) $F(6)-F(2)$
(E) $\frac{1}{2} F(6)-\frac{1}{2} F(2)$
5. The equation $y=2 e^{6 x}-5$ is a particular solution to which of the following differential equations?
(A) $y^{\prime}-6 y-30=0$
(B) $2 y^{\prime}-12 y+5=0$
(C) $y^{\prime \prime}-5 y^{\prime}-6 y=0$
(D) $y^{\prime \prime}-2 y^{\prime}+y+5=0$
6. Let R be the region bounded by the graph $y=\cos x$, the x-axis, and the y-axis.
a) Find the area of the region R.
b) Find the value of h such that the vertical line $x=h$ divides the region R into two regions of equal area.
7. A particle moves along the x-axis so that its acceleration at any time x is given by $a(t)=6 \mathrm{t}-18$. At time $t=0$, the velocity of the particle is $v(0)=24$, and at time $t=1$, its position is $x(1)=20$.
a) Write an expression for the velocity $v(t)$ of the particle at any time t.
b) Write an expression for the position $x(t)$ of the particle at any time t.
c) For what values of t is the particle at rest?
8. Consider the differential equation given by $\frac{d y}{d x}=\frac{x y}{2}$.
a) On the axes provided below, sketch a slope field for the given differential equation at the nine points indicated.

b) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $y(0)=3$.

Calculus AB -- Chapter 5B Sample Test (no calculators)

5. The graph of the continuous function f, consisting of three line segments and a semicircle, is shown above. Let g be the function given by $g(x)=\int_{-2}^{x} f(t) d t$.
a) Find $g(-6)$ and $g(3)$.
b) Find $g^{\prime}(0)$.
c) Find all values of x on the open interval $-6<x<3$ for which the graph of g has a horizontal tangent line. Determine whether g has a local maximum, a local minimum, or neither at each of these values. Justify your answers.
d) Find all values of x on the open interval $-6<x<3$ for which the graph of g has a point of inflection. Explain your reasoning.

