Calculators Allowed

1. B 2. C
2. a. 9.408
3. a. 0.082
b. $\frac{\pi}{2} \int_{0}^{1}\left(\frac{e^{x}-(x-1)^{2}}{2}\right)_{1.488}^{2} d x$
b. $\int_{-.715}^{0} \sqrt{1+\left(e^{x}\right)^{2}}+\sqrt{1+(-2 x)^{2}} d x$
4. a. 8.997
b. $\pi \int_{0}^{1.488}\left[(1+(4-2 x))^{2}-\left(1+\frac{x^{3}}{1+x^{2}}\right)^{2}\right] d x$

No Calculators

1. D
2. A
3. 1
4. $50-\frac{16 \sqrt{2}}{\pi}$
\qquad
Period \qquad

Calculus BC - Chapter 6 Sample Test (calculators allowed)

Show all work for free-response questions.
A. Let R be the region enclosed by the graph of $y=1+\ln \left(\cos ^{4} x\right)$, the x-axis, and the vertical lines $x=-\frac{2}{3}$ and $x=\frac{2}{3}$. The closest integer approximation of the area of R is
(A) 0
(B)
(C) 2
(D) 3
(E) 4

$$
\int_{-2 / 3}^{2 / 3} 1+2(c=7 x) d x
$$

2. The base of a solid S is the region enclosed by the graph of $y=\sqrt{\ln x}$, the vertical line $x=e$, and the x-axis. If the cross sections of S perpendicular to the x-axis are squares, then the volume of S is
(A) $\frac{1}{2}$
(B) $\frac{2}{3}$
(C) 1
(D) 2
(E) $\frac{1}{3}\left(e^{3}-1\right)$

3. Let R be the region enclosed by the graphs of $y=e^{x}, y=(x-1)^{2}$, and the vertical line $x=1$.
a) Find the volume of the solid generated when R is revolved about the x-axis.

b) The base of a solid is the region R. Each cross section of the solid perpendicular to the x-axis is a semicircle. Write an expression involving one or more integrals that gives the volume of the solid. Do not evaluate.

$$
\int_{0}^{1} \frac{\pi}{2}\left(\frac{e^{x}-(x-1)^{2}}{2}\right)^{2} d x
$$

4. Let R be the region bounded by the graphs of $y=e^{x}$ and $y=-x^{2}+1$.
a) Find the area of R.

$$
\int_{p}^{0}\left(-x^{2}+1\right)-e^{x} d x=.082
$$

b) Write an expression involving one or more integrals that gives the length of the boundary of the region R. Do not evaluate.

$$
\int_{p}^{0} \sqrt{1+\left(e^{x}\right)^{2}} d x+\int_{p}^{p} \sqrt{1+(-2 x)^{2}} d x
$$

5. Let R be the region bounded by the y-axis and the graphs of $y=\frac{x^{3}}{1+x^{2}}$ and $y=4-2 x$, as shown in the figure above.
a) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

$$
\begin{aligned}
& \underbrace{\square}_{4-2 x-\frac{x^{3}}{1+x^{2}}} \\
& \left.V=\int_{0}^{w}(4-2 x)-\frac{x^{3}}{1+x^{2}}\right)^{2} d x=8.997
\end{aligned}
$$

b) Set up, but do not integrate, an integral expression in terms of a single variable for the volume of the solid generated when region R is revolved about the horizontal line

\qquad
Period \qquad

Calculus BC - Chapter 6 Sample Test (no calculators)

Show all work for free-response questions.
4. The area of the region enclosed by the graph of $y=x^{2}+1$ and the horizontal line $y=5$ is
(A) $\frac{14}{3}$
(B) $\frac{16}{3}$
(C) $\frac{28}{3}$
(D) $\frac{32}{3}$
(E) 8π

$$
\begin{array}{r}
x^{2}+1=5 \\
x^{2}=4 \\
x= \pm 2
\end{array}
$$

$$
A=\int_{-2}^{2} 5-\left(x^{2}+1\right) d x=\int_{-2}^{2}\left(4-x^{2}\right) d x=4 x-\left.\frac{1}{3} x^{3}\right|_{-2} ^{2}
$$

$$
=\left(8-\frac{8}{3}\right)-\left(-8+\frac{8}{3}\right)=16-\frac{15}{3}=\frac{32}{3}
$$

2. Find the area of the region bounded by $y=e^{x}, y=e^{-x}$, and the vertical line $x=1$.
(A) $+\frac{1}{e}-2$
(B) $e-\frac{1}{e}$
(C) $e+\frac{1}{e}$
(D) $2 e-2$

$$
\begin{aligned}
\int_{0}^{1}\left(e^{x}-e^{-x}\right) d y & =e^{x}+\left.e^{-x}\right|_{0} ^{1} \\
& =\left(e^{1}+e^{-1}\right)-(1+1) \\
& =e^{+} \frac{1}{e}-2
\end{aligned}
$$

3. Find the average value of $f(x)=1+\sqrt{1-x^{2}}-\frac{1}{1+x^{2}}$ from $x=1+10 x=1$, $\frac{1}{1-(-1)} \int_{-1}^{1}\left(1+\sqrt{1-x^{2}}-\frac{1}{1+x^{2}}\right) d y=\frac{1}{2}\left(\int_{-1}^{1+x^{2}} 1 d x \int_{-1}^{1} \sqrt{1-x^{2}} d x\right)-\int_{-1}^{1+x^{2}} \frac{1}{1-1} d x$

$$
=\frac{1}{2}\left(\left.x\right|_{-1} ^{1}+\frac{1}{2} \pi\left(1^{2}-\frac{1}{12}-1 \times\left.\right|_{-1} ^{1}\right)\right.
$$

$$
=\frac{1}{2}\left(2+\frac{\pi}{2}-\left(\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)\right)=\square\right.
$$

4. On a certain day, the temperature, in degrees Fahrenheit, in a small town t hours after midnight $(t=0)$ is modeled by the function $g(t)=50-8 \sin \left(\frac{\pi t}{12}\right)$. What is the average temperature of the town between $3 \mathrm{am}(t=3)$ and $6 \mathrm{am}(t=6)$, in degrees Fahrenheit?

$$
\begin{aligned}
& \frac{1}{6-3} \int_{3}^{6}\left(50-8 \sin \left(\frac{\pi t}{12}\right) d t=\frac{1}{3}\left[50 t+8 \cdot \frac{12}{\pi} \cos \left(\frac{1}{2}\right)\right]_{3}^{6}\right. \\
& =\frac{1}{3}\left[\left(50.6+\frac{96}{\pi} \cos \frac{\pi}{2}\right)-\left(50.3+\frac{96}{\pi} \cos \frac{\pi}{4}\right)\right]=\frac{1}{3}\left(300+0-150-\frac{96}{\pi} \cdot \frac{\sqrt{2}}{2}\right) \\
& \left.=\frac{1}{3}\left(150-\frac{48 \sqrt{2}}{\pi}\right) \xrightarrow{\pi}\right)
\end{aligned}
$$

