Name	
Period	

Calculus BC – Chapter 6 Sample Test (calculators allowed)

Show all work for free-response questions.

1. Let *R* be the region enclosed by the graph of $y = 1 + \ln(\cos^4 x)$, the *x*-axis, and the vertical lines $x = -\frac{2}{3}$ and $x = \frac{2}{3}$. The closest integer approximation of the area of *R* is

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

2. The base of a solid S is the region enclosed by the graph of $y = \sqrt{\ln x}$, the vertical line x = e, and the x-axis. If the cross sections of S perpendicular to the x-axis are squares, then the volume of S is

(A)
$$\frac{1}{2}$$
 (B) $\frac{2}{3}$ (C) 1 (D) 2 (E) $\frac{1}{3}(e^3 - 1)$

3. Let *R* be the region enclosed by the graphs of $y = e^x$, $y = (x - 1)^2$, and the vertical line x = 1.

a) Find the volume of the solid generated when R is revolved about the x-axis.

b) The base of a solid is the region R. Each cross section of the solid perpendicular to the *x*-axis is a semicircle. Write an expression involving one or more integrals that gives the volume of the solid. Do not evaluate.

- 4. Let *R* be the region bounded by the graphs of $y = e^x$ and $y = -x^2 + 1$.
 - a) Find the area of *R*.

b) Write an expression involving one or more integrals that gives the length of the boundary of the region R. Do not evaluate.

5. Let *R* be the region bounded by the *y*-axis and the graphs of $y = \frac{x^3}{1+x^2}$ and y = 4 - 2x, as shown in the figure above.

a) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

b) Set up, but <u>do not integrate</u>, an integral expression in terms of a single variable for the volume of the solid generated when region *R* is revolved about the horizontal line y = -1.

Name	
Period	

Calculus AB - Chapter 6 Sample Test (no calculators)

Show all work for free-response questions.

- 1. The area of the region enclosed by the graph of $y = x^2 + 1$ and the horizontal line y = 5 is
 - (A) $\frac{14}{3}$ (B) $\frac{16}{3}$ (C) $\frac{28}{3}$ (D) $\frac{32}{3}$ (E) 8π

- 2. Find the area of the region bounded by $y = e^x$, $y = e^{-x}$, and the vertical line x = 1.
 - (A) $e + \frac{1}{e} 2$ (B) $e - \frac{1}{e}$ (C) $e + \frac{1}{e}$ (D) 2e - 2
- 3. Find the average value of $f(x) = 1 \frac{1}{1+x^2} + \sqrt{1-x^2}$ from x = -1 to x = 1.

4. On a certain day, the temperature, in degrees Fahrenheit, in a small town t hours after midnight (t = 0) is modeled by the function $g(t) = 50 - 8 \sin\left(\frac{\pi t}{12}\right)$. What is the average temperature of the town between 3am (t = 3) and 6am (t = 6), in degrees Fahrenheit?