Spring Break Assignment

ALL WORK MUST GO ON A SEPARATE SHEET OF PAPER. IF YOU DON'T KNOW HOW TO DO A PROBLEM, COPY THE ENTIRE PROBLEM AND ALL CHOICES ONTO YOUR PAPER.

No Calculators Allowed:

- 2. The graph of $y = 3x^2 x^3$ has a relative maximum at
 - (A) (0, 0) only
 - (B) (1,2) only
 - (C) (2,4) only
 - (D) (4, -16) only
 - (E) (0,0) and (2,4)
- 3. If x > 0, $\int x^{-\frac{1}{3}} dx =$ (A) $\frac{2}{3}x^{\frac{2}{3}} + C$ (B) $-\frac{1}{3}x^{-\frac{4}{3}} + C$ (C) $-\frac{3}{2}x^{\frac{2}{3}} + C$ (D) $\frac{3}{2}x^{\frac{2}{3}} + C$ (E) $-\frac{3}{4}x^{-\frac{4}{3}} + C$
- 4. If $f(x) = e^{\sin x}$, how many zeros does f'(x) have on the closed interval $[0, 2\pi]$?
 - (A) 1 (B) 2 (C) 3 (D) 4 (E) 5

5. $\lim_{x \to \infty} \frac{10^8 x^5 + 10^6 x^4 + 10^4 x^2}{10^9 x^6 + 10^7 x^5 + 10^5 x^3} =$ (A) 0 (B) 1 (C) -1 (D) $\frac{1}{10}$ (E) $-\frac{1}{10}$

6. The graph of which function has y = -1 as an asymptote ?

(A) $y = e^{-x}$ (B) $y = \frac{-x}{1-x}$ (C) $y = \ln(x+1)$ (D) $y = \frac{x}{x+1}$ (E) $y = \frac{x}{1-x}$

- 7. If $f(x) = \sqrt{4\sin x + 2}$, then f'(0) =
 - (A) -2
 - (B) 0
 - (C) √2
 - (D) $\frac{\sqrt{2}}{2}$
 - (E) 1

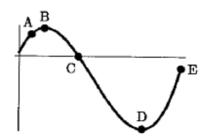
8. $\frac{d}{dx}\left(e^{3\ln x}\right) =$

(A) $e^{3 \ln x}$ (B) $\frac{e^{3 \ln x}}{x}$ (C) x^3 (D) $3x^2$ (E) 3

9. The equation of the tangent line to the curve $x^2 + y^2 = 169$ at the point (5, -12) is

- (A) 5y 12x = -120
- (B) 5x 12y = 119
- (C) 5x 12y = 169
- (D) 12x + 5y = 0
- (E) 12x + 5y = 169

10.



The figure above shows the graph of the velocity of a moving object as a function of time. At which of the marked points is the speed the greatest?

- (A) A
- (B) B
- (C) C
- (D) D
- (E) E

11.

For the figure above, the area of the shaded region is

(A)
$$\frac{14}{3}$$

(B) $\frac{16}{3}$
(C) $\frac{28}{3}$

(D)
$$\frac{32}{3}$$

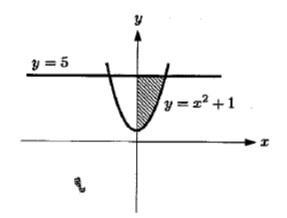
(E) $\frac{65}{3}$

13. If the graph of $f(x) = 2x^2 + \frac{k}{x}$ has a point of inflection at x = -1, then the value of k is

- (A) 1
- (B) -1
- (C) 2
- (D) -2
- (E) 0

 $14. \quad \int \sin(3x+4) \, dx =$

- (A) $-\frac{1}{3}\cos(3x+4) + C$ (B) $-\cos(3x+4) + C$
- (C) $-3\cos(3x+4) + C$
- (D) $\cos(3x+4) + C$
- (E) $\frac{1}{3}\cos(3x+4) + C$



15. For what values of x is the graph of $y = \frac{2}{4-x}$ concave downward?

- (A) No values of x
- (B) x < 4
- (C) x > -4
- (D) x < -4
- (E) x > 4

. `

16. A particle moves along the x-axis in such a way that its position at time t is given by $x(t) = \frac{1-t}{1+t}$. What is the acceleration of the particle at time t = 0?

4

(A) $-\frac{3}{5}$ (B) -4(C) 4 (D) 2 (E) -2

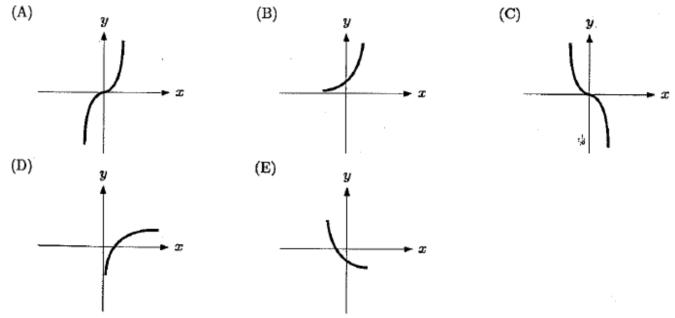
17. Suppose $f(x) = \ln 3x$ and $f^{-1}(x)$ denotes the inverse of f. Then $\int f^{-1}(x) dx =$

- (A) $3e^{x} + C$ (B) $\frac{1}{3}e^{x} + C$ (C) $\frac{1}{x} + C$ (D) $\frac{1}{3x} + C$ (E) $\frac{1}{3}e^{3x} + C$
- 18. If $y = x(\ln x)^2$, then $\frac{dy}{dx} =$ (A) $3(\ln x)^2$ (B) $(\ln x)(2x + \ln x)$ (C) $(\ln x)(2 + \ln x)$ (D) $(\ln x)(2 + x \ln x)$ (E) $(\ln x)(1 + \ln x)$

- 20. A particle moves on the x-axis so that at any time t its velocity $v(t) = \sin 2t$ subject to the condition x(0) = 0 where x(t) is the position function. Which of the following is an expression for x(t)?
 - (A) $\cos 2t + \frac{1}{2}$
 - (B) $-\frac{1}{2}\sin 2t + \frac{1}{2}$
 - (C) $-\frac{1}{2}\cos 2t$

₹.

- (D) $-\frac{1}{2}\cos 2t + \frac{1}{2}$
- (E) $-\frac{1}{2}\cos 2t \frac{1}{2}$
- 21. If, for all values of x, f'(x) < 0 and f''(x) > 0, which of the following curves could be part of the graph of f?



- 22. If $\frac{dy}{dx} = xy^2$ and x = 1 when y = 1, then y =
- (A) x²
- (B) $\frac{-2}{x^2-3}$
- (C) $x^2 3$
- (D) $\frac{2}{x^2+1}$

(E)
$$\frac{x^2-3}{2}$$

24. The maximum value of $f(x) = 2x^3 - 9x^2 + 12x - 1$ on [-1, 2] is

- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) 4

25. For which pair of functions f(x) and g(x) below, will the $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$?

 $\underline{f(x)} = \underline{g(x)}$ e^x x^2 (A) (B) e^x $\ln x$ $\ln x$ (C) e^x (D) \boldsymbol{x} $\ln x$ (E) 3^x 2^x

26. Let f(x) be the function defined by $f(x) = \begin{cases} x, & x \le 0 \\ x+1, & x > 0 \end{cases}$.

The value of $\int_{-2}^{1} xf(x) dx =$ (A) $\frac{3}{2}$ (B) $\frac{5}{2}$ (C) $\frac{7}{2}$ (D) $\frac{11}{2}$ (E) 3 27. The average value of the function $f(x) = \cos(\frac{1}{2}x)$ on the closed interval [-4, 0] is

(A) $-\frac{1}{2}\sin(2)$ (B) $-\frac{1}{4}\sin(2)$ (C) $\frac{1}{2}\cos(2)$ (D) $\frac{1}{4}\sin(2)$ (E) $\frac{1}{2}\sin(2)$

Calculators Allowed:

29. The volume of the solid formed by revolving the region bounded by the graph of $y = (x-3)^2$ and the coordinate axes about the <u>x-axis</u> is given by which of the following integrals?

ь

(A)
$$\pi \int_0^3 (x-3)^2 dx$$

(B) $\pi \int_0^3 (x-3)^4 dx$
(C) $2\pi \int_0^3 (x-3)^2 dx$
(D) $2\pi \int_0^3 x(x-3)^2 dx$
(E) $2\pi \int_0^3 x(x-3)^4 dx$
 $\lim_{x \to -3} \frac{x^2 + 3x}{\sqrt{x^2 + 6x + 9}}$ is
(A) -3 (B) -1

31. The cost C of producing x items is given by $C(x) = 20,000 + 5(x - 60)^2$. The revenue R obtained by selling x items is given by R(x) = 15,000 + 130x. The revenue will exceed the cost for all x such that

٩.

(C) 1

Ð

(D) 3

(E) nonexistent

- (A) 0 < x < 46
- (B) x > 46

30.

- (C) x < 100
- (D) 46 < x < 100
- (E) x > 100

x	0	1	2	3	4	5	6	7	8	9	10
f(x)	20	19.5	18	15.5	12	7.5	2	-4.5	-12	-20.5	-30

Some values of a continuous function are given in the table above. The Trapezoidal Rule approximation for $\int_0^{10} f(x) dx$ is

s)

- (A) 30.825
- (B) 32.500
- (C) 33.325
- (D) 33.333
- (E) 35.825
- 33. Let R(t) represent the rate at which water is leaking out of a tank, where t is measured in hours. Which of the following expressions represents the total amount of water that leaks out in the first three hours?

(A)
$$R(3) - R(0)$$

(B)
$$\frac{R(3)-R(0)}{3-0}$$

(C) $\int_0^3 R(t) dt$

(D)
$$\int_0^3 R'(t) dt$$

(E)
$$\frac{1}{3} \int_0^3 R(t) dt$$

34. Let f and g be differentiable functions such that:

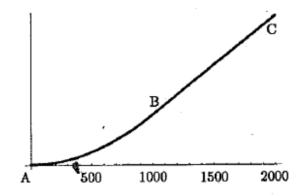
$$f(1) = 4, g(1) = 3, f'(3) = -5$$

$$f'(1) = -4, g'(1) = -3, g'(3) = 2$$

If
$$h(x) = f(g(x))$$
, then $h'(1) =$

- (A) -9
- (B) 15
- (C) 0
- (D) -5
- (E) -12

32.



The figure above shows a road running in the shape of a parabola from the bottom of a hill at A to point B. At B it changes to a line and continues on to C. The equation of the road is

 $R(x) = \begin{cases} ax^2, & \text{from A to B} \\ bx + c, & \text{from B to C} \end{cases}$

B is 1000 feet horizontally from A and 100 feet higher. Since the road is smooth, R'(x) is continuous. What is the value of b?

- (A) 0.2
- (B) 0.02
- (C) 0.002
- (D) 0.0002
- (E) 0.00002

36. The shortest distance from the curve xy = 4 to the origin is

- (A) 2
- (B) 4
- (C) √2
- (D) 2√2
- (E) $\frac{1}{2}\sqrt{2}$

35.

x.	0.3	-0.2	-0.1	0	0.1	0.2	0.3
f(x)	2.018	2.008	2.002	2	2.002	2.008	2.018
g(x)	1	1	1	2	2	2	2
h(x)	1.971	1.987	1.997	undefined	1.997	1.987	1.971

The table above gives the values of three functions, f, g, and h near x = 0. Based on the values given, for which of the functions does it appear that the limit as x approaches zero is 2?

- (A) f only
- (B) g only
- (C) h only
- (D) f and h only
- (E) f, g, and h

38. Suppose that f(x) is an even function and let $\int_0^1 f(x) dx = 5$ and $\int_0^7 f(x) dx = 1$.

What	is	\int_{-7}^{-1}	f(x)	dx?
------	----	------------------	------	-----

- (A) −5
- (B) −4
- (C) 0
- (D) 4
- (E) 5

39. The area of the region enclosed by the graphs of $y = e^{(x^2)} - 2$ and $y = \sqrt{4 - x^2}$ is

٩.

Ъ

- (A) 2.525
- (B) 4.049
- (C) 4.328
- (D) 5.050
- (E) 6.289

40. If $f(x) = |(x^2 - 12)(x^2 + 4)|$, how many numbers in the interval $-2 \le x \le 3$ satisfy the conclusion of the Mean Value Theorem?

缟

(A) None

(B) One

- (C) Two
- (D) Three
- (E) Four

41. If f and g are differentiable functions, then $\int_0^{g(x)} f'(t) dt =$

- (A) f(g(x))
- (B) g(f(x))

ć

- (C) g(f(x)) g(f(0))
- (D) f(g(x)) f(0)
- (E) f(g(x)) f(g(0))
- 42. The amount A(t) of a certain item produced in a factory is given by

 $A(t) = 4000 + 48(t-3) - 4(t-3)^3$

where t is the number of hours of production since the beginning of the workday at 8:00 am. At what time is the rate of production increasing most rapidly?

- (A) 8:00 am
- (B) 10:00 am
- (C) 11:00 am
- (D) 12:00 noon
- (E) 1:00 pm

- 43. At how many points on the curve $y = 4x^5 3x^4 + 15x^2 + 6$ will the line tangent to the curve pass through the origin?
 - (A) One
 - (B) Two
 - (C) Three
 - (D) Four

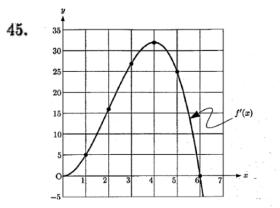
4

(E) Five

44. A population grows according to the equation $P(t) = 6000 - 5500e^{-0.159t}$ for $t \ge 0$, t measured in years. This population will approach a limiting value as time goes on. During which year will the population reach half of this limiting value?

沾

- (A) Second
- (B) Third
- (C) Fourth
- (D) Eighth
- (E) Twenty-ninth



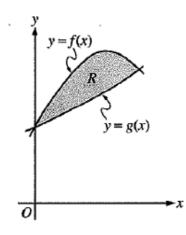
Let f be a differentiable function for all x. The graph of f'(x) is shown above. If f(2) = 10, which of the following best approximates the maximum value of f(x)?

- (A) 30
- (B) 50
- (C) 70
- (D) 90
- (E) 110

2005 AP° CALCULUS AB FREE-RESPONSE QUESTIONS (Form B)

CALCULUS AB SECTION II, Part A Time-45 minutes Number of problems-3

A graphing calculator is required for some problems or parts of problems.



- 1. Let f and g be the functions given by $f(x) = 1 + \sin(2x)$ and $g(x) = e^{x/2}$. Let R be the shaded region in the first quadrant enclosed by the graphs of f and g as shown in the figure above.
 - (a) Find the area of R.
 - (b) Find the volume of the solid generated when R is revolved about the x-axis.
 - (c) The region R is the base of a solid. For this solid, the cross sections perpendicular to the x-axis are semicircles with diameters extending from y = f(x) to y = g(x). Find the volume of this solid.
- 2. A water tank at Camp Newton holds 1200 gallons of water at time t = 0. During the time interval $0 \le t \le 18$ hours, water is pumped into the tank at the rate

$$W(t) = 95\sqrt{t}\sin^2\left(\frac{t}{6}\right)$$
 gallons per hour.

During the same time interval, water is removed from the tank at the rate

$$R(t) = 275\sin^2\left(\frac{t}{3}\right)$$
 gallons per hour.

- (a) Is the amount of water in the tank increasing at time t = 15? Why or why not?
- (b) To the nearest whole number, how many gallons of water are in the tank at time t = 18?
- (c) At what time t, for $0 \le t \le 18$, is the amount of water in the tank at an absolute minimum? Show the work that leads to your conclusion.
- (d) For t > 18, no water is pumped into the tank, but water continues to be removed at the rate R(t) until the tank becomes empty. Let k be the time at which the tank becomes empty. Write, but do not solve, an equation involving an integral expression that can be used to find the value of k.

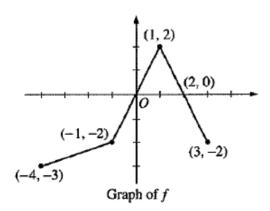
- 3. A particle moves along the x-axis so that its velocity v at time t, for $0 \le t \le 5$, is given by $v(t) = \ln(t^2 3t + 3)$. The particle is at position x = 8 at time t = 0.
 - (a) Find the acceleration of the particle at time t = 4.
 - (b) Find all times t in the open interval 0 < t < 5 at which the particle changes direction. During which time intervals, for $0 \le t \le 5$, does the particle travel to the left?
 - (c) Find the position of the particle at time t = 2.
 - (d) Find the average speed of the particle over the interval 0 ≤ t ≤ 2.

2005 AP[®] CALCULUS AB FREE-RESPONSE QUESTIONS (Form B)

CALCULUS AB

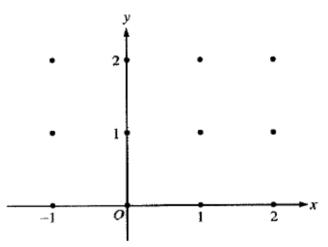
SECTION II, Part B Time—45 minutes Number of problems—3

No calculator is allowed for these problems.



- The graph of the function f above consists of three line segments.
 - (a) Let g be the function given by $g(x) = \int_{-4}^{x} f(t) dt$. For each of g(-1), g'(-1), and g''(-1), find the value or state that it does not exist.
 - (b) For the function g defined in part (a), find the x-coordinate of each point of inflection of the graph of g on the open interval -4 < x < 3. Explain your reasoning.
 - (c) Let h be the function given by $h(x) = \int_x^3 f(t) dt$. Find all values of x in the closed interval $-4 \le x \le 3$ for which h(x) = 0.
 - (d) For the function h defined in part (c), find all intervals on which h is decreasing. Explain your reasoning.

- 5. Consider the curve given by $y^2 = 2 + xy$.
 - (a) Show that $\frac{dy}{dx} = \frac{y}{2y x}$.
 - (b) Find all points (x, y) on the curve where the line tangent to the curve has slope $\frac{1}{2}$.
 - (c) Show that there are no points (x, y) on the curve where the line tangent to the curve is horizontal.
 - (d) Let x and y be functions of time t that are related by the equation $y^2 = 2 + xy$. At time t = 5, the value of y is 3 and $\frac{dy}{dt} = 6$. Find the value of $\frac{dx}{dt}$ at time t = 5.
- 6. Consider the differential equation $\frac{dy}{dx} = \frac{-xy^2}{2}$. Let y = f(x) be the particular solution to this differential equation with the initial condition f(-1) = 2.
 - (a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.
 (Note: Use the axes provided in the test booklet.)



- (b) Write an equation for the line tangent to the graph of f at x = −1.
- (c) Find the solution y = f(x) to the given differential equation with the initial condition f(-1) = 2.

Multiple Choice

1. E	2. C	3. D	4. B	5. A	6. E	7. C	8. D	9. C	10. D	11. B	12. A	13. C	14. A	15. E
16. C	17. B	18. C	19. B	20. D	21. E	22. B	23. C	24. E	25. C	26. C	27. E	28. E	29. B	30. E
31. D	32. B	33. C	34. B	35. A	36. D	37. D	38. B	39 . D	40. D	41. D	42. C	43. A	44. C	45. E

Problem 1

The graphs of f and g intersect in the first quadrant at (S, T) = (1.13569, 1.76446).

(a) Area =
$$\int_0^S (f(x) - g(x)) dx$$

= $\int_0^S (1 + \sin(2x) - e^{x/2}) dx$
= 0.429

(b) Volume =
$$\pi \int_0^S ((f(x))^2 - (g(x))^2) dx$$

= $\pi \int_0^S ((1 + \sin(2x))^2 - (e^{x/2})^2) dx$
= 4.266 or 4.267

(c) Volume
$$= \int_{0}^{S} \frac{\pi}{2} \left(\frac{f(x) - g(x)}{2} \right)^{2} dx$$
$$= \int_{0}^{S} \frac{\pi}{2} \left(\frac{1 + \sin(2x) - e^{x/2}}{2} \right)^{2} dx$$
$$= 0.077 \text{ or } 0.078$$

Problem 2

- (a) No; the amount of water is not increasing at t = 15since W(15) - R(15) = -121.09 < 0.
- (b) $1200 + \int_0^{18} (W(t) R(t)) dt = 1309.788$ 1310 gallons

(c)
$$W(t) - R(t) = 0$$

 $t = 0, 6.4948, 12.9748$

 t (hours)	gallons of water				
0	1200				
6.495	525				
12.975	1697				
18	1310				

The values at the endpoints and the critical points show that the absolute minimum occurs when t = 6.494 or 6.495.

٦

(d)
$$\int_{18}^{k} R(t) dt = 1310$$

Problem 3

(a) $a(4) = v'(4) = \frac{5}{7}$

(b) v(t) = 0 $t^2 - 3t + 3 = 1$ $t^2 - 3t + 2 = 0$ (t-2)(t-1) = 0 t = 1, 2 v(t) > 0 for 0 < t < 1 v(t) < 0 for 1 < t < 2v(t) > 0 for 2 < t < 5

> The particle changes direction when t = 1 and t = 2. The particle travels to the left when 1 < t < 2.

- Problem 4
- (a) $g(-1) = \int_{-4}^{-1} f(t) dt = -\frac{1}{2}(3)(5) = -\frac{15}{2}$ g'(-1) = f(-1) = -2g''(-1) does not exist because f is not differentiable at x = -1.
- (b) x = 1g' = f changes from increasing to decreasing at x = 1.

(c)
$$x = -1, 1, 3$$

(d) *h* is decreasing on [0, 2] h' = -f < 0 when f > 0

(c)
$$s(t) = s(0) + \int_0^t \ln(u^2 - 3u + 3) du$$

 $s(2) = 8 + \int_0^2 \ln(u^2 - 3u + 3) du$
 $= 8.368 \text{ or } 8.369$

(d)
$$\frac{1}{2} \int_0^2 |v(t)| dt = 0.370 \text{ or } 0.371$$

Problem 5

(a)
$$2yy' = y + xy'$$
$$(2y - x)y' = y$$
$$y' = \frac{y}{2y - x}$$

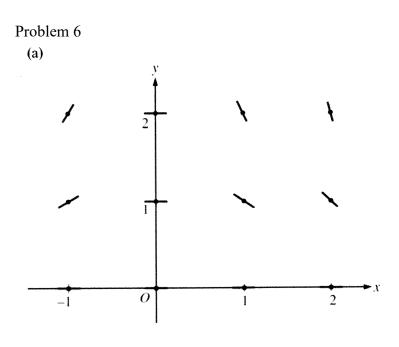
(b)
$$\frac{y}{2y-x} = \frac{1}{2}$$

 $2y = 2y - x$
 $x = 0$
 $y = \pm\sqrt{2}$
 $(0, \sqrt{2}), (0, -\sqrt{2})$

(c)
$$\frac{y}{2y-x} = 0$$

 $y = 0$
The curve has no horizontal tangent since
 $0^2 \neq 2 + x \cdot 0$ for any x.

(d) When
$$y = 3$$
, $3^2 = 2 + 3x$ so $x = \frac{7}{3}$.
 $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = \frac{y}{2y - x} \cdot \frac{dx}{dt}$
At $t = 5$, $6 = \frac{3}{6 - \frac{7}{3}} \cdot \frac{dx}{dt} = \frac{9}{11} \cdot \frac{dx}{dt}$
 $\frac{dx}{dt}\Big|_{t=5} = \frac{22}{3}$



(b) Slope
$$= \frac{-(-1)4}{2} = 2$$

 $y - 2 = 2(x + 1)$

(c)
$$\frac{1}{y^2} dy = -\frac{x}{2} dx$$

 $-\frac{1}{y} = -\frac{x^2}{4} + C$
 $-\frac{1}{2} = -\frac{1}{4} + C; \ C = -\frac{1}{4}$
 $y = \frac{1}{\frac{x^2}{4} + \frac{1}{4}} = \frac{4}{x^2 + 1}$