For problems 1-8, determine if the Mean Value Theorem applies to the function on the given interval. If it does, find the c-value. If it doesn't, explain why not.

1. $f(x)=|x| \quad[-1,3]$ not diff at $x=0,50$ does not apply
2. $f(x)=x^{2}-2 x \quad[1,3]$ diffi, so MVT applies $\frac{f(3)-f(1)}{3-1}=\frac{3-(-1)}{2}=2$

$$
\begin{aligned}
f^{\prime}(x)=2 x-2 & =2 \\
2 x & =4 \\
x & =2
\end{aligned}
$$

3. $f(x)=x^{2}-3 x+2 \quad[1,2]$ diffi, so MVT applies

$$
\frac{f(2)-f(1)}{2-1}=\frac{0-0}{1}=0 \quad f^{\prime}(x)=2 x-3=0
$$

4. $f(x)=x^{2 / 3}$

$$
\begin{aligned}
& {[-2,2] \quad f^{\prime}(x) }=\frac{2}{3} x^{-1 / 3}=\frac{2}{3 x^{1 / 3}} \rightarrow \text { undef. at } x=c \\
& \text { not diff. at } x=0 \text {, so MVT } \\
& \text { daes not apply }
\end{aligned}
$$

5. $\begin{aligned} f(x)=\frac{1}{x-4} \quad[2,6] \quad & \text { undef, at } x=4 \text {, so not cont. } \\ & \Rightarrow M V T \text { does not apply }\end{aligned}$
6. $f(x)=\frac{x^{2}-x}{x} \quad[-1,1] \quad$ undef. at $x=0$, so not cont. \Longrightarrow MVT does not apply
7. $f(x)=\sin x$

$$
\begin{array}{r}
f^{\prime}(x)=\cos x=0 \\
x=\frac{\pi}{2}
\end{array}
$$

8. $f(x)=\tan x=\frac{\sin y}{\cos x}[0, \pi]$ undef at undef at $x=\frac{\pi}{2}$, so not cont. \Rightarrow MVT docs not apply

For problems 9-13, determine if the Intermediate Value Theorem would guarantee a c-value on the given interval.
9. $f(x)=x^{2}+x-1$

$$
f(5)=29
$$

$$
\begin{aligned}
& f(c)=11 \quad[0,5] \\
& f(0)<11<f(5) \text { and } f \\
& \Rightarrow \text { IVT applies }
\end{aligned}
$$

$$
\text { and } f \text { is cont. }
$$

10. $f(x)=\frac{x}{x-1}$

$$
f(c)=1
$$

$[0,2]$
Not continuous at $x=1$, so IVT does not apply
11. $f(x)=|x|$

$$
f(1)=1
$$

$$
\begin{gathered}
f(c)=3 \quad[-4,1] \\
(1)<3<f(-4) \text { and } f \text { is } \\
\Rightarrow \text { IVT applies. }
\end{gathered}
$$

$$
\begin{array}{ll}
f(-4)=4 & f(1)<3<f(-4) \text { and } f \text { is cont } \\
f(1)=1
\end{array}
$$

12. $f(x)=\left\{\begin{array}{ll}x & x \leq 1 \\ 3 & x>1\end{array} \quad[0,4]\right.$

$$
\begin{aligned}
& \left.\lim _{x \rightarrow 1^{+}} \begin{array}{l}
f(x)=3 \\
\lim _{x \rightarrow 1^{-}} f(x)=1
\end{array}\right\} f \text { is not cont. at } x=1, \\
& \text { so IVT } \\
& \text { does not apply }
\end{aligned}
$$

13. $f(x)=\frac{x^{2}+x}{x-1}$

$$
\begin{aligned}
& f\left(\frac{5}{2}\right)=35 / 6=5.833 \\
& f(4)=\frac{20}{3}=6.667
\end{aligned}
$$

$$
f(c)=6 \quad\left[\frac{5}{2}, 4\right]
$$

For problems 14-16, find the c-values for the given problem.
14. Problem 9

$$
\begin{aligned}
& x^{2}+x-1=11 \\
& x^{2}+x-12=0 \\
& (x+4)(x-3)=0
\end{aligned}
$$

15. Problem 11

$$
|x|=3
$$

$$
x=-3
$$

16. Problem 13

$$
\begin{aligned}
& \frac{x^{2}+x}{x-1}=6 \\
& x^{2}+x=6(x-1) \\
& x^{2}+x=6 x-6
\end{aligned}
$$

$$
x^{2}-5 x+6=0
$$

$$
\begin{aligned}
& x^{2}-5 x \\
& (x-2)(x-3)=0
\end{aligned}
$$

$$
x=3
$$

For Problems 17-21, use the table below with selected values of the twice differentiable function k. Reach each explanation and decide whether you would apply IVT, EVT, or MVT.

x	1	2	3	4	5	6	7
$k(x)$	5	2	-4	-1	3	2	0

17. Since k is differentiable, it is also continuous. Since $k(6)=2$ and $k(7)=0$, and since 1 is between 2 and 0 , it follows by IVT that $k(c)=1$ for some c between 6 and 7 .
18. Since k is differentiable and, therefore, also continuous, and since $\frac{k(3)-k(2)}{3-2}=-6$, it follows by MVT that $k^{\prime}(c)=-6$ for some c in the interval $(2,3)$.
19. There must be a minimum value for k at some r in $[1,7]$, because k is differentiable and, therefore, also continuous. Hence the EVT applies.
20. There must be some value a in $(2,6)$ for which $k^{\prime}(a)=0$, because $k(2)=k(6)$, and since k is differentiable, the \qquad applies.
21. Since k is differentiable, the \qquad guarantees some a in $(4,5)$ for which $k^{\prime}(a)=4$ and also some b in $(5,6)$ for which $k^{\prime}(b)=-1$. Then since k^{\prime} is differentiable, and therefore also continuous, it follows by the IVT applied to k^{\prime} that $k^{\prime}(c)=0$ for some c in (a, b) and therefore in $(4,6)$.
