Optimization

- p. 374: 6-8, 11-14, 20, 24, 48
- 6. Call the two numbers x + 100 and x. Minimize $f(x) = (x + 100)x = x^2 + 100x$. $f'(x) = 2x + 100 = 0 \implies x = -50$. Since f''(x) = 2 > 0, there is an absolute minimum at x = -50. The two numbers are 50 and -50.
- 7. Call the two numbers x and $\frac{100}{x}$, where x > 0. Minimize $f(x) = x + \frac{100}{x}$. $f'(x) = 1 \frac{100}{x^2} = \frac{x^2 100}{x^2}$. The critical number is x = 10. Since f'(x) < 0 for 0 < x < 10 and f'(x) > 0 for x > 10, there is an absolute minimum at x = 10. The numbers are 10 and 10.
- 8. Call the two numbers x and y. Then x + y = 16, so y = 16 x. Call the sum of their squares S. Then $S = x^2 + y^2 = x^2 + (16 x)^2 \Rightarrow S' = 2x + 2(16 x)(-1) = 2x 32 + 2x = 4x 32$. $S' = 0 \Rightarrow x = 8$. Since S'(x) < 0 for 0 < x < 8 and S'(x) > 0 for x > 8, there is an absolute minimum at x = 8. Thus, y = 1608 = 8 and $S^2 = 8^2 + 8^2 = 128$.
- 11. If the rectangle has dimensions x and y, then its perimeter is 2x + 2y = 100 m, so y = 50 x. Thus, the area is A = xy = x(50 x). We wish to maximize the function $A = xy = x(50 x) = 50x x^2$, where 0 < x < 50. Since A'(x) = 50 2x = -2(x 25), A'(x) > 0 for 0 < x < 25 and A'(x) < 0 for 25 < x < 50. Thus, A has an absolute maximum at x = 25, and $A(25) = 25^2 = 625$ m². The dimensions of the rectangle that maximize its area are x = y = 25 m. (The rectangle is a square.)
- 12. If the rectangle has dimensions x and y, then its area is $xy = 1000 \,\text{m}^2$, so y = 1000 / x. The perimeter is P = 2x + 2y = 2x + 2000 / x. Thus, the area is A = xy = x(50 x). We wish to minimize the function P(x) = 2x + 2000 / x for x > 0. Since $P'(x) = 2 2000 / x^2 = (2 / x^2)(x^2 1000)$, so the only critical number in the domain of P is $x = \sqrt{1000}$. $P''(x) = 4000 / x^3 > 0$, so P is concave up throughout its domain and $P(\sqrt{1000}) = 4\sqrt{1000}$ is an absolute minimum value. The dimensions of the rectangle with minimal perimeter are $x = y = \sqrt{1000} = 10\sqrt{10}$ m. (The rectangle is a square.)
- 13. If a rectangle has its base along the x-axis and two vertices on the parabola $y = 16 x^2$, then one side of the parabola has length 2x, and the other has height $y = 16 x^2$, so the area of the rectangle is $2x(16 x^2)$. This is option (C).
- 14. The square of the distance d between the point (3,-1) and a point (x,2x+1) on the line y=2x+1 is $S=d^2=(x-3)^2+(y-(-1))^2==(x-3)^2+(2x+1+1)^2=5x^2+2x+13$ Then $S'(x)=10x+2=0 \Leftrightarrow 10x=-2 \Leftrightarrow x=-\frac{1}{5}$. And, S''(x)=10>0, so the lone critical point is a minimum. Therefore, the closest point is $\left(-\frac{1}{5},2\left(-\frac{1}{5}\right)+1\right)=\left(-\frac{1}{5},\frac{3}{5}\right)$ which is choice (A).

- 20. (a) Let x be the length of a side of the square base of the box and h be the height of the box. Then The area of the box is $x \cdot x + 4 \cdot xh = 108 \text{ m}^2 \Rightarrow 4xh = 108 x^2 \Rightarrow x \Rightarrow h = \frac{108}{4x} \frac{1}{4}x \Rightarrow h = \frac{27}{x} \frac{1}{4}x$. Then the volume of the box is $V(x) = x^2h = x^2\left(\frac{27}{x} \frac{1}{4}x\right) = 27x \frac{1}{4}x^3$.
 - (b) We need to maximize the volume, so $V'(x) = 27 \frac{3}{4}x^2 = 0 \Leftrightarrow 27 = \frac{3}{4}x^2 \Leftrightarrow 36 = x^2 \Leftrightarrow 6 = x$ (since x > 0). Then $V''(x) = -\frac{3}{2}x \Rightarrow V''(6) = -9 < 0 \Rightarrow$ the volume of the box is maximized when x = 6 m. So the dimensions that maximize the volume of the box are x = 6 m by 6 m by 6 m by 6 m by 6 m.
- 24. Let *b* be the length of the base of the box and *h* the height. The surface area is $1200 = b^2 + 4bh$ $\Rightarrow h = (1200 b^2)/(4b)$. The volume is $V = b^2h = b^2(1200 b^2)/(4b) = 300b b^3/4 \Rightarrow$ $V'(b) = 300 \frac{3}{4}b^2$. $V'(b) = 0 \Rightarrow 300 = \frac{3}{4}b^2 \Rightarrow b^2 = 400 \Rightarrow b = \sqrt{400} = 20$. Since V'(b) > 0 for 0 < b < 20 and V'(b) < 0 for b > 20, there is an absolute maximum when b = 20 by the First Derivative Test for Absolute Extreme Values. If b = 20, then $h = (1200 20^2)(4 \cdot 20) = 10$, so the largest possible volume is $b^2h = (20)^2(10) = 4000$ cm³.
- 48. $xy = 384 \Leftrightarrow y = 384/x$. The total area is A(x) = (8+x)(12+384/x) = 12(40+x+256/x), so $A'(x) = 12(1-256/x^2) = 0 \Rightarrow x = 16$. There is an absolute minimum when x = 16 since A'(x) < 0 for 0 < x < 16 and A'(x) > 0 for x > 16. When x = 16, y = 384/16 = 24, so the dimensions are 24 cm and 36 cm.

