p. 374 : $18,22,23,27,34,42,49$
18. (a)

The areas of the three figures are $12,500,12,500$ and $9000 \mathrm{ft}^{2}$. There appears to be a maximum area of at least $12,500 \mathrm{ft}^{2}$.

(d) Length of fencing $=750 \Rightarrow 5 x+2 y=750$
(e) $5 x+2 y=750 \Rightarrow y=375-\frac{5}{2} x \Rightarrow A(x)=\left(375-\frac{5}{2} x\right) x=375 x-\frac{5}{2} x^{2}$
(f) $A^{\prime}(x)=375-5 x=0 \Rightarrow x=75$. Since $A^{\prime \prime}(x)=-5<0$, there is an absolute maximum when $x=75$. Then $y=\frac{375}{2}=187.5$. The largest areas is $75\left(\frac{375}{2}\right)=14,062.5 \mathrm{ft}^{2}$. These values of x and y are between the values in the first and second figures in part (a). Our original estimate was low.
22. The volume of the crate is $V=($ length $) \times($ width $) \times($ height $)=l \times s \times s=l s^{2}=1200 \mathrm{ft}^{3}$. Thus, $l=200 / s^{2}$. Building the crate requires two square ends $\left(2 s^{2}\right)$ and the bottom, plus two sides of length l and height $s(3 s l)$. Thus the material required is
$A(s)=2 s^{2}+3 s l=2 s^{2}+3 s\left(1200 / s^{2}\right)=2 s^{2}+3600 / s$. This is option (B).
23. Let b be the length of the base of the box and h the height. The volume is $32,000=b^{2} h \Rightarrow$ $h=32,000 / b^{2}$. The surface area of the open box is $S=b^{2}+4 b h=b^{2}+4\left(32,000 / b^{2}\right) b$ $=b^{2}+4(32,000 / b)$. So $S^{\prime}(b)=2 b-4(32,000) / b^{2}=2\left(b^{3}-64,000\right) / b^{2}=0 \Leftrightarrow b=\sqrt[3]{64,000}=40$. This gives an absolute minimum since $S^{\prime}(b)<0$ if $b<40$ and $S^{\prime}(b)>0$ if $b>40$. The box should be $40 \times 40 \times 20$.
27. See the figure. The fencing costs $\$ 20$ per linear foot to install and the cost of the fencing on the west side will be split with the neighbor, so the farmer's cost C will be $C=\frac{1}{2}(20 x)+20 y+20 x=20 y+30 x$. The area A will be maximized when $C=5000$, so $5000=20 y+30 x \Leftrightarrow$
 $20 y=5000-3 x \Leftrightarrow y=250-\frac{3}{2} x$. Now $A=x y=\left(250-\frac{3}{2} x\right)=250 x-\frac{3}{2} x^{2} \Rightarrow A^{\prime}(x)=250-3 x$. $A^{\prime}=0 \Leftrightarrow x=\frac{250}{3}$ and since $A^{\prime \prime}=-3<0$, we have a maximum for A when $x=\frac{250}{3} \mathrm{ft}$ and $y=250-\frac{3}{2}\left(\frac{250}{3}\right)=125 \mathrm{ft}$. [The maximum area is $125\left(\frac{250}{3}\right)=10,416 . \overline{6} \mathrm{ft}^{2}$.]
34. See the figure. The rectangle has length $l=2 x(x>0)$, and height $h=y_{1}-y_{2}=\left(18-x^{2}\right)-\left(2 x^{2}-9\right)=27-3 x^{2}$. Therefore the area of the rectangle is $A(x)=2 x \cdot\left(27-3 x^{2}\right)=54 x-6 x^{3}$. We want to maximize the area, so we find $A^{\prime}(x)=54-18 x^{2}=0 \Leftrightarrow 54=18 x^{2} \Leftrightarrow 3=x^{2} \Leftrightarrow$ $x=\sqrt{3}$ since $x>0 . A^{\prime \prime}(x)=-24 x \Rightarrow A^{\prime \prime}(\sqrt{3})=-24 \sqrt{3}<0 \Rightarrow$ the

maximum area occurs when $x=\sqrt{3}$. Then the maximum area is $A(\sqrt{3})=54 \cdot \sqrt{3}-6(\sqrt{3})^{3}=36 \sqrt{3}$, which is option (D).
42. The volume of the cylinder is $V=16 \pi=\pi r^{2} h$, which means $16=r^{2} h \Rightarrow 16 h^{-1}=r^{2} \Rightarrow 4 h^{-1 / 2}=r$. The surface area (which is the amount of tin required) is $A=2 \pi r h+2 \pi r^{2}$, so $A(h)=2 \pi\left(4 h^{-1 / 2}\right) h+2 \pi\left(4 h^{-1 / 2}\right)^{2}=8 \pi \sqrt{h}+32 \pi h^{-1}$. To minimize the area, we find $A^{\prime}(h)=8 \pi \cdot \frac{1}{2 \sqrt{h}}-\frac{32 \pi}{h^{2}}=0 \Leftrightarrow \frac{4 \pi}{\sqrt{h}}=\frac{32 \pi}{h^{2}} \Leftrightarrow h^{2}=8 \sqrt{h}=\Leftrightarrow h^{3 / 2}=8 \Leftrightarrow h=4 . A^{\prime}(h)<0$ for a $h<4$, and $A^{\prime}(h)>0$ for $h>4$, so the surface area is minimized when $h=4$ inches. The height that will minimize the amount of tin required to construct the can is 4 (D).
49. $x y=180$, so $y=180 / x$. The printed area is
$A(x)=(x-2)(y-3)=(x-2)(180 / x-3)=186-3 x-360 / x$. $A^{\prime}(x)=-3+360 / x^{2}=0$ when $x^{2}=120 \Rightarrow x=2 \sqrt{30}$. This gives an absolute maximum since $A^{\prime}(x)>0$ for $0<x<2 \sqrt{30}$ and $A^{\prime}(x)<0$ for $x>2 \sqrt{30}$. When $x=2 \sqrt{30}, y=180 /(2 \sqrt{30})$, so the dimensions are
 $2 \sqrt{30} \mathrm{in}$. and $90 / \sqrt{30} \mathrm{in}$.

