For Today, You Will Need:

- Paper
- Pencil
- Calculator
\rightarrow All of these things are on (or next to) the counter

Points, Lines, and Planes

Def. A point is a location in space with no area.

- Points are labeled with an upper case letter.

This is called point M

Def. Points that lie on the same line are collinear.

These points are collinear
These points are noncollinear

Def. A line passes through at least two points and extends forever in two directions. In diagrams, lines have arrows at both ends.

- A line can be labeled with a lower case cursive letter or by using two points on it.

This is called line k or $\overleftrightarrow{B C}$
or $\overleftrightarrow{C B} \quad \overleftrightarrow{B P}$

Def. A line segment is a section of line that has endpoints.

- Line segments are named for their endpoints.

This is called
$\overline{D E} \quad \overline{E D}$

Def. The ray $\overrightarrow{F G}$ consists of an initial point F and all points on $\overleftrightarrow{F G}$ that lie on the same side of F as point G.

Def. A plane is a flat surface in space that extends indefinitely in all directions.

- A plane can be labeled with an upper case cursive letter or by using three points on it.

This is called plane \boldsymbol{P} or plane $A B C$

Def. Points that lie on the same plane are coplanar.
Ex. Name a point that is coplanar with points H, G, and F.

π

Def. The measure of $\overline{A B}$ is the distance from A to B. This measure is written $A B$ (without the bar).
$\overline{A B} \rightarrow$ picture of the segment
$A B \rightarrow$ length of the segment

Postulate 1: Segment Addition Postulate

Let A, B, and C be collinear points. If B is
between A and C, then $A B+B C=A C$.

PART + THE REST = WHOLE THING

Ex. Let L be between M and N. If $M L=5$ and $M N=19$, find $L N$.

$$
\begin{gathered}
\text { Part }+ \text { Rest }=\text { Whole } \\
5+x=19 \\
-15 \\
x=14
\end{gathered}
$$

Ex. Assume A is between B and C. If $A B=7 x+9$, $A C=3 x+4$, and $B C=143$, find x and the length of each segment.

$$
\begin{aligned}
& A C=3(13)+4=43 \\
& A B=7(13)+9=100 \\
& B C=143
\end{aligned}
$$

$$
\begin{gathered}
7 x+9+3 x+4=143 \\
10 x+13=143 \\
-13-13 \\
10 x=\frac{130}{10} \\
x=13
\end{gathered}
$$

Ex. If $A(-1,7)$ and $B(5,1)$, find $A B$.

$$
\begin{array}{rlr}
a^{2}+b^{2} & =c^{2} & \sqrt{72}=x \\
6^{2}+6^{2} & =x^{2} & x=8.5 \\
36+36 & =x^{2} & \\
\sqrt{72} & =\sqrt{x^{2}} &
\end{array}
$$

Pract. Find JK.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 2^{2}+3^{2}=x^{2} \\
& 4+9=x^{2} \\
& \sqrt{13}=\sqrt{x^{2}} \\
& x=\sqrt{13}=3.6
\end{aligned}
$$

