You will need graph paper for today's lesson.

Transformations

A transformation changes the location, shape, and/or size of a figure.

- The preimage is the figure before the change
- The image is the figure after it's been changed
- The image points are labeled with "primes"
$>$ Point D is mapped to Point D^{\prime}
$>\triangle D E F$ is mapped to $\triangle D^{\prime} E^{\prime} F^{\prime}$

We use coordinate notation to describe how the coordinates of the preimage are changed to get the coordinates of the image.
Ex. Graph the image of $\Delta J K L$ under the transformation $(x, y) \rightarrow(x-4, y-3)$.

$$
\begin{array}{ll}
(x, y) \rightarrow(x-4, y-3) \\
J(-1,2) & J^{\prime}(-5,-1) \\
K(2,2) & K^{\prime}(-2,-1) \\
L(2,-4) & L^{\prime}(-2,-7)
\end{array}
$$

Ex. Graph the image of $\Delta R S T$ under the transformation $(x, y) \rightarrow(x,-y)$.

$$
\begin{aligned}
(x, y) & \rightarrow(x,-y) \\
R(-4,3) & R^{\prime}(-4,-3) \\
S(-1,3) & S^{\prime}(-1,-3) \\
T(-4,1) & T^{\prime}(-4,-1)
\end{aligned}
$$

Ex. Find the coordinates of the preimage and image points, and then write the coordinate rule for the transformation.

$$
\begin{aligned}
(x, y) & (x+1, y-2) \\
S(-3,4) & S^{\prime}(-2,2) \\
T(2,4) & T^{\prime}(3,2) \\
u(-2,0) & u^{\prime}(-1,-2)
\end{aligned}
$$

Ex. Find the coordinates of the preimage and image points, and then write the coordinate rule for the transformation.

$$
\begin{array}{ll}
(x, y) & (x,-y) \\
P(-3,-1) & P^{\prime}(-3,1) \\
Q(3,-1) & Q^{\prime}(3,1) \\
R(1,-4) & R^{\prime}(1,4)
\end{array}
$$

These are called rigid transformations because the shape doesn't change (it just moves).

Ex. Graph the image of $\triangle K L M$ under the transformation $(x, y) \rightarrow\left(\frac{1}{2} x, 2 y\right)$.

$$
(x, y) \rightarrow\left(\frac{1}{2} x, 2 y\right)
$$

$$
\begin{array}{ll}
K(-2,1) & K^{\prime}(-1,2) \\
L(4,-3) & L^{\prime}(2,-6) \\
M(-2,-4) & M^{\prime}(-1,-8)
\end{array}
$$

This is called a nonrigid transformation because the shape changes.

