Find the slope of each line:

$$
\begin{aligned}
& L(4,3) \text { and } M(2, y) \\
& \frac{9-3}{2-4}=\frac{6}{-2}=-3
\end{aligned}
$$

2. $y=5 x-2$
3. $\underset{-1 / x-3 y=-x}{-x} \rightarrow \frac{\not 3}{33} y=\frac{-x}{-3} x+\frac{6}{-3} \rightarrow y=\left(\frac{1}{3} x-2\right.$
4. Are any of the lines parallel? Why? no, none of slopes are equal
5. Are any of the lines perpendicular? Why? yes, -3 and $\frac{1}{3}$ are app. recip.
10.2 Slope and Perpendicular Lines

Perpendicular $=$ Opposite ReciprocalSlopes

Intersecting $=$ no relationship with slopes

Using Slope to Determine the Shape:

Check if it's a Parallelogram:

- Find slopes of sides and check if opposite sides are parallel (same slope).
\rightarrow if no, then either trapezoid (1 pair parallel) or nothing special (no parallel)
\rightarrow if yes, now check for rectangle and rhombus

Using Slope to Determine the Shape:

Check if it's a Rectangle:

- See if consecutive sides are perpendicular (slopes are opposite reciprocals)

Check if it's a Rhombus:

- Find slopes of diagonals and check if they are perpendicular (opposite reciprocals)

If the sides AND diagonals are perpendicular, then it is a SQUARE!

Ex. Show that $D E F G$ is a rectangle.

$$
\text { slope }=\frac{\text { rise }}{\text { run }}
$$

$\$$ go left to right
$\frac{3}{2}$ and $-\frac{2}{3}$ are
app. recipe.,
so sides are perp.

Ex. A city block is a quadrilateral bounded by four streets with given equations. Classify the quadrilateral bounded by the streets.

Street	$-x+2 y=4$
Pine Street	$2 x+y=7$
Elm Road	$2 y=x-6$
Chestnut Street	$y+8=-2 x$
Cedar Road	
sides have same slope	

\Rightarrow parallelogram
-2 and $\frac{1}{2}$ are opp. recip.

$$
\begin{aligned}
y+8 & =-2 x \\
-8 & =-8 \\
y & =-2 x-8
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2}{2} y=\frac{x}{2}-\frac{6}{2} \\
& y=\frac{1}{2} x-3
\end{aligned}
$$

Ex. Write the equation of the line perpendicular to $y=4 x-9$ that passes through the point $(2,10)$.

Ex. Determine whether the quadrilateral $A B C D$ with vertices $A(2,-3), B(6,5), C(-2,1)$, and $D(-6,-7)$ is a parallelogram.
yes, opp. slopes are equal $\frac{12}{12}=1$

Is it a rectangle? Why? No, 2 and $\frac{1}{2}$ not
Is it a rhombus? Why? Yes, 1 and -1 recipe. D
Is it a square? Why? No, not and rectangle opp. recipe.

Ex. Determine whether the quadrilateral $A B C D$ with vertices $A(-3,0), B(1,2), C(2,0)$, and $D(-2,-2)$ is a parallelogram. yes, opp. side have same slope

Is it a rectangle? Why? yes, $\frac{1}{2}$ and $-\frac{2}{1}$ are opp. recip. Is it a rhombus? Why? no, $\frac{4}{3}$ and a are not off recap. Is it a square? Why? no, not rhombus

City Map Project Rough Draft is due Thursday

By the end of next class, you will turn in:

- Score Sheet/Legend (Page 3 of assignment sheet)
- All item names will be listed in the legend
- Calculations Sheet (Page 4 of assignment sheet)
- Work should be clearly labeled on a separate sheet
- Score is based on accuracy of your answers
- I'm happy to check your answers
- Draft Map (Page 5 of assignment sheet)
- All items labeled and numbered as in legend
- Do not color
- Must include all 26 items from the list on Page 2

DON'T START FINAL DRAFT UNTIL THE ROUGH DRAFT IS RETURNED

