Similarity

Similar figures have the same shape but not the same size

- \sim is the symbol for similar
- In ~ figures corresponding angles are <u>congruent</u> and corresponding sides are <u>proportional</u>.

A similarity transformation is one in which the image has the same shape as it's pre-image

Translation: A shift

 $(x,y) \to (x+1,y-2)$

Rotation: Turn around a point

Reflection: A mirror image

Dilation: Make bigger or smaller

The triangles are similar. $\Delta ABC \sim \Delta DEF$ ΔDEF is a dilation of ΔABC by a scale factor of 2.

Coordinate Notation for a Dilation

(with the origin as the center)

 $(x, y) \rightarrow (kx, ky)$ k is the scale factor

Example:

A dilation with scale factor 4 that is centered at the origin can be expressed as: $(x, y) \rightarrow (4x, 4y)$

Example:

Dilate the triangle with a scale factor of $\frac{1}{2}$.

 $(x, y) \rightarrow (\pm x, \pm y)$ $A(0,0) \rightarrow A'(0,0)$ $B(4,10) \rightarrow B'(2,5)$ $C(8,0) \rightarrow C'(4,0)$

Figures are similar if you can map one onto the other using one or more similarity or congruence transformation.

<u>Ex.</u> Determine whether the two figures are similar using similarity transformations. K(2,12)

 $(\chi, \gamma) \rightarrow (2\chi, 2\gamma)$

Give the coordinate notation for the sequence of similarity transformations that will map the pre-image onto the image.

