Geometric Mean \& Similarity in Right Triangles
Def. The geometric mean between a and b is the number x where

$$
\frac{x}{a}=\frac{b}{x}
$$

Ex. Find the geometric mean between 14 and 10.

$$
\begin{aligned}
\frac{14}{x}>\frac{x}{10} \quad \sqrt{x} & =\sqrt{140} \\
x & =\sqrt{140}
\end{aligned}
$$

Ex. If 15 is the geometric mean between 9 and x, find x.

$$
\frac{9}{15} \times \frac{15}{x}
$$

$$
9 x=225
$$

$$
x=25
$$

Find the geometric mean.
6. 6 and 24
7. 5 and 12

$$
\begin{aligned}
& \frac{x}{6}>\frac{24}{x} \\
& \sqrt{x^{2}}=\sqrt{144} \\
& x=12
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x}{5}=\frac{12}{x} \\
& \sqrt{x^{2}}=\sqrt{60} \\
& x=\sqrt{60}
\end{aligned}
$$

Def. An altitude of a triangle is a line
segment from a vertex that is perpendicular to the opposite side.

Similar Right Triangles.

If the altitude is drawn from the vertex of a right triangle to its hypotenuse, then the two triangles are similar to the given triangle and to each other.

$$
\triangle A C B \sim \triangle A D C \sim \triangle C D B
$$

Bob is a hungry skydiver who has just landed on top of a mountain and is looking for a "means" down.

Bob always lands on the 90 degree angle of the big triangle.

$$
\frac{x}{h}=\frac{h}{y} \quad \frac{x}{a}=\frac{a}{x+y} \quad \frac{y}{b}=\frac{b}{x+y}
$$

Ex. Find x.

$$
\left\lvert\, \begin{array}{ll}
6 & \frac{x}{3} \\
x & 3
\end{array} \begin{aligned}
& \sqrt{x^{2}}=\sqrt{18} \\
& x=\sqrt{18}
\end{aligned}\right.
$$

Ex. Find x.

Ex. Find a and b.

$4 a=100$

$$
a=25
$$

$\sqrt{b^{2}}=\sqrt{116}$

$$
b=\sqrt{116}
$$

