You will need one of my calculators for the lesson.

In a Right Triangle

13.1 Tangent Ratio

$$tanA = \frac{opposite\ leg}{adjacent\ leg}$$

Ex. Find
$$\tan A = \frac{18}{24} = \frac{3}{4}$$

Ex. Find
$$\tan B = \frac{24}{18} = \frac{4}{3}$$

Pract. Find
$$\tan R = \frac{36}{15} = \frac{12}{5}$$

Pract. Find tan
$$Q = \frac{15}{36} = \frac{5}{12}$$

 $Ex. \tan 27^\circ = 5$

 $\underline{\mathsf{Ex.}}\ \mathsf{Find}\ x$

 $\underline{\mathsf{Ex.}}\ \mathsf{Find}\ x$

$$x an 54 = \frac{87}{x} x$$
 $x an 54 = \frac{87}{x} x$
 $x an 54 = \frac{87}{ta an 54}$
 $x = \frac{87}{ta an 54}$
 $x = 63.2$

<u>Pract.</u> A ladder needs to reach the second story window, which is 10 ft above the ground, and make an angle of 70° with the ground. How far from the building does the base of the ladder need to be

positioned?

$$\chi = 3.6$$

3. tanx=? 3.3
3 tanx=?

Decide whether each expression can be used to find the length of \overline{ZY} . Mark Yes or No for each expression.

expression	Yes	No
$3\tan(X)$	X	
$3\tan(Y)$		X

7. tany= 3.
? tany= 3.
Tany = 3.
Tany
7. -3.

If
$$x + 5 = 21$$
, how would we find x ?

If
$$\sqrt{w^2} = \sqrt{36}$$
, how would we find w?

If
$$\tan A = 7.11$$
, how would we find A?
 $A = 81.99$

If
$$\tan J = \frac{10}{7}$$
, how would we find J ?

55.0

Ex. Find $m \angle A$

$$tan A = \frac{19}{36}$$

 $A = 27.8$

 $\underline{\mathsf{Ex.}}\ \mathsf{Find}\ m \angle J$

$$tan J = \frac{46}{93}$$
 $J = 26.3$

