You will need one of my calculators for the lesson.

In a Right Triangle

13.1 Tangent Ratio

Opposite = across from
Adjacent = next to

$$
\tan A=\frac{\text { opposite leg }}{\text { adjacent leg }}
$$

Ex. Find $\tan A=\frac{18}{24}=\frac{3}{4}$

Ex. Find $\tan B=\frac{24}{18}=\frac{4}{3}$

Pract. Find $\tan R=\frac{36}{15}=\frac{12}{5}$

Pract. Find $\tan Q=\frac{15}{36}=\frac{5}{12}$

Ex. $\tan 27^{\circ}=.51$

Ex. Find x

$$
8 \cdot \tan 27=\frac{x}{8} \cdot 8
$$

$$
\begin{gathered}
8 \tan 27=x \\
x=4.1
\end{gathered}
$$

Ex. Find x

$$
\begin{gathered}
x \tan 54=\frac{87}{x} * \\
x \frac{\tan 54}{\tan 54}=\frac{87}{\tan 54} \\
x=\frac{87}{\tan 54} \\
x=63.2
\end{gathered}
$$

Pract. A ladder needs to reach the second story window, which is 10 ft above the ground, and make an angle of 70° with the ground. How far from the building does the base of the ladder need to be positioned?

$x \cdot \tan 70=\frac{10}{x} \cdot x$
$x \frac{\tan 70}{\tan 70}=\frac{10}{\tan 70}$

$$
\begin{aligned}
& x=\frac{10}{\tan 70} \\
& x=3.6
\end{aligned}
$$

$3 \cdot \tan x=\frac{?}{\beta} \cdot 3$
$3 \tan x=$?

Decide whether each expression can be used to find the length of $\overline{Z Y}$. Mark Yes or No for each expression.

expression	Yes	No
$3 \tan (X)$	X	
$3 \tan (Y)$		

?. $\tan y=\frac{3}{?} \cdot \frac{1}{3}$
$? \frac{\tan y}{\tan y}=\frac{3}{\tan y}$

$$
?=\frac{3}{\tan y}
$$

If $x+5=21$, how would we find x ?
-5 - 5
If $\sqrt{w^{2}}=\sqrt{36}$, how would we find w ?
If $\tan A=7.11$, how would we find A ?
$A=81.99$
If $\tan J=\frac{10}{7}$, how would we find J ?
55.0

Ex. Find $m \angle A$

$$
\begin{aligned}
\tan A & =\frac{19}{36} \\
A & =27.8
\end{aligned}
$$

Ex. Find $m \angle J$

$$
\begin{aligned}
\tan J & =\frac{46}{93} \\
J & =26.3
\end{aligned}
$$

