Find the indicated ratio as a fraction
1)

$$
\begin{aligned}
& \sin M \\
& \frac{16}{34}=\frac{8}{17}
\end{aligned}
$$

2) $\cos Z$
3) $\tan L$
$\frac{12}{20}=\frac{3}{5}$

Find x or y.
$8 \cdot \cos 36=\frac{y}{8} \cdot 8$
4)

6)

5)
adj
7)

$5 \cdot \tan 50=\frac{x}{8} \cdot 6$
$5 \tan 50=x$
$x=6.0$

$$
\begin{aligned}
& \operatorname{li}_{j} x \cdot \tan 64=\frac{10}{x} \cdot x \\
& \frac{x \tan 64}{\tan 64}=\frac{10}{\tan 64} \\
& x=\frac{10}{\tan 64}=4.9
\end{aligned}
$$

Solving Triangles

Things to Remember

- If you're missing an angle, add up to 180°
- If you're missing a side, $a^{2}+b^{2}=c^{2}$
- When relating sides and angles, use SOH CAH TOA
"Solve the triangle" means find measures of all the sides and angles

Ex. Solve the triangle.

$$
\begin{array}{lcc}
A C=3.6 & \tan A=\frac{2}{3} & 90+33.7+C=180 \\
m \angle A=33.7 & A=33.7 & C=56.3 \\
m \angle C=56.3 & a^{2}+b^{2}=c^{2} \\
2^{2}+3^{2}=x^{2} \\
4+9=x^{2} \\
\sqrt{13}=\sqrt{x^{2}} \\
x=3.6
\end{array}
$$

Ex. Solve the triangle.

$$
G H=5.5
$$

$$
G J=11.8
$$

$$
m \angle H=65
$$

$$
\begin{aligned}
25+90+H & =180 \quad 13 \cdot \sin 25=\frac{x}{15} \cdot+3 \\
H & =65 \quad 13 \sin 25=x \\
a^{2}+b^{2} & =c^{2} \\
5.5^{2}+y^{2} & =13^{2} \\
30.2+y^{2} & =169 \\
\sqrt{y^{2}} & =\sqrt{138.8}
\end{aligned} \rightarrow y=11.8
$$

$\Delta J K L$ has vertices $J(4,6), K(4,1)$, and $L(-2,1)$.
Graph the triangle and find all side lengths and angle measures.

$$
\begin{array}{lr}
m \angle J=50.2 & \tan J=\frac{6}{5} \\
m \angle K=90 & J=50.2 \\
m \angle L=39.5 & 50.2+90+L=180 \\
J K=5 & L=39.8 \\
K L=6 &
\end{array}
$$

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
6^{2}+5^{2} & =x^{2} \\
36+25 & =x^{2} \\
\sqrt{61} & =\sqrt{x^{2}} \\
x & =7.8
\end{aligned}
$$

