Find the indicated ratio as a fraction

1)
$$\sin M = \frac{16}{34} \cdot \frac{8}{17}$$

2)
$$\cos Z = \frac{12}{20} : \frac{3}{5}$$

$$\frac{30}{16} = \frac{15}{8}$$

$$x = \frac{4}{6}$$
 6)
 $y = 41.8$

Solving Triangles

Things to Remember

- If you're missing an angle, add up to 180°
- If you're missing a side, $a^2 + b^2 = c^2$
- When relating sides and angles, use SOH CAH TOA

"Solve the triangle" means find measures of all the sides and angles Ex. Solve the triangle.

$$AC = 3.6$$

 $m \angle A = 33.7$
 $m \angle C = 56.3$

$$tan A = \frac{2}{3}$$
 $A = 33.7$

$$a^{2}+b^{2}=c^{2}$$
 $2^{2}+3^{2}=x^{2}$
 $4+9=x^{2}$
 $4=x^{2}$
 $4=x^{2}$
 $4=x^{2}$
 $4=x^{2}$

Ex. Solve the triangle.

$$GH = 5.5$$

$$GJ = 11.8$$

$$m\angle H = 6.5$$

$$25 + 90 + H = 180$$

$$H = 65$$

$$13 = 25 = \frac{x}{43} + 35$$

$$13 = 25 = x$$

$$x = 5.5$$

$$x = 5.5$$

$$30.2 + x^{2} = 169$$

$$y^{2} = 138.8 \rightarrow y = 11.8$$

 ΔJKL has vertices J(4,6), K(4,1), and L(-2,1). Graph the triangle and find all side lengths and angle measures.

$$m \angle J = 50.2$$
 $tan J = \frac{6}{5}$
 $m \angle K = 90$ $J = 50.2$
 $m \angle L = 39.5$
 $JK = 5$ $50.2 + 90 + L = 180$
 $L = 39.8$
 $L = 6$
 $L = 7.8$

$$a^{2}+b^{2}=c^{2}$$
 $6^{2}+5^{2}=x^{2}$
 $36+25=x^{2}$
 $561=\sqrt{x^{2}}$
 $x=7.8$