15.2 and 15.3

Each quadrilateral described is inscribed in a circle. Determine the angle measures.
1.Quadrilateral $A B C D$ has $\mathrm{m} \angle A=53^{\circ}$ and $\mathrm{m} \angle B=82^{\circ}$.
2.Quadrilateral $R S T U$ has $\mathrm{m} \angle S=104^{\circ}$ and $\mathrm{m} \angle T=55^{\circ}$.
$\mathrm{m} \angle C=$
$\mathrm{m} \angle D=$
$\mathrm{m} \angle R=\quad \mathrm{m} \angle U=$
3. Quadrilateral $J K L M$ has $\mathrm{m} \angle J=90^{\circ}$ and $\angle K \cong \angle M$.
4.Quadrilateral $R S T U$ has $\mathrm{m} \angle S=35^{\circ}$ and $\mathrm{m} \angle T=120^{\circ}$.
$\mathrm{m} \angle K=$
$\mathrm{m} \angle L=$
$\mathrm{m} \angle M=$
$\mathrm{m} \angle R=$
$\mathrm{m} \angle U=$

Determine whether each quadrilateral can be inscribed in a circle. If it cannot be determined, say so.
5.

6.

7.

8.

For each inscribed quadrilateral, determine the angle measures.

$\mathrm{m} \angle X=$
$\mathrm{m} \angle Y=$
$\mathrm{m} \angle Z=$
$\mathrm{m} \angle W=$

$\mathrm{m} \angle C=$
$\mathrm{m} \angle D=$
$\mathrm{m} \angle E=$
$\mathrm{m} \angle F=$
11.

12.

In Exercises 13-15, find the value of each variable.
13.

14.

15.

16. Determine whether $\overline{A B}$ is a diameter of the circle. Explain your reasoning.

Find each indicated measure for $\odot M$.

17. a. $m \overparen{E F}$
b. $m \angle E$
c. $m \angle F$
d. $m \widehat{D F}$

Find the values of the variables.

Refer to the figure for Problems 1-4. $\overline{A B}$ is tangent to $\odot C$ at point B and $\overline{A D}$ is tangent to $\odot C$ at point B. Determine the angle measures.

1. $\mathrm{m} \angle A B C=$ \qquad 2. $\mathrm{m} \angle D C B=$

2. $\mathrm{m} \angle B D A=$ \qquad 4. $\mathrm{m} \angle C D B=$ \qquad
Refer to the figure for Problems 5-8. $\overline{A B}$ is tangent to $\odot C$ at point B and $\overline{A D}$ is tangent to $\odot C$ at point B. Determine the angle measures.
3. $\mathrm{m} \angle B C D=$ \qquad
4. $\mathrm{m} \angle C D A=$ \qquad
5. $\mathrm{m} \angle B E D=$ \qquad 8. $\mathrm{m} \angle D B A=$

In Problems 9 and 10, $\overline{Q M}$ is tangent to $\odot P$ at point M and $\overline{Q N}$ is tangent to $\odot P$ at point P. Solve for the variable and determine the angle measures.
9.

$x=$ \qquad $\mathrm{m} \angle N Q M=$ \qquad
10.

$x=$ \qquad $\mathrm{m} \angle M Q N=$ \qquad

$$
\mathrm{m} \angle Q M P=
$$ $\mathrm{m} \angle N P M=$ \qquad

In Problems 11 and 12, $\overline{E F}$ is tangent to $\odot H$ at point F and $\overline{E G}$ is tangent to $\odot H$ at point G. Determine the length of $\overline{E F}$.
11. $E F=$

12. $E F=$

In Exercises 13-14, find the value of x
13.

14.

Refer to the figure for Problems 15-18. $\overline{\mathbf{G H}}$ is tangent to $\odot J$ at point H and $\overline{G l}$ is tangent to $\odot J$ at point I. Answer the questions to determine the length of $\overline{\mathbf{G H}}$. The first one is done for you.
15. How are $\overline{G H}$ and $\overline{G l}$ related?
16. Write an equation to solve for x.
17. Solve the equation. What is the value of x ?
18. What is $G H$?

Find the value(s) of the variable
19.

20.

21.

Factor each trinomial.

1. $x^{2}+13 x+36$
2. $x^{2}+11 x+24$
3. $x^{2}+14 x+40$
4. $x^{2}-7 x+6$
5. $x^{2}-9 x+14$
6. $x^{2}-11 x+24$
7. $x^{2}-x-2$
8. $x^{2}-3 x-18$
9. $x^{2}-4 x-45$
10. $x^{2}-6 x+5$
11. $x^{2}-9 x+18$
12. $x^{2}-12 x+32$

Solve each quadratic equation by factoring.
26. $x^{2}-3 x+2=0$
27. $x^{2}-4 x+3=0$
30. $x^{2}-6 x+5=0$
31. $x^{2}+16 x+28=0$
32. $x^{2}+10 x+9=0$
33. $x^{2}-12 x+32=0$
34. $x^{2}+13 x+42=0$
35. $x^{2}-7 x+12=0$

