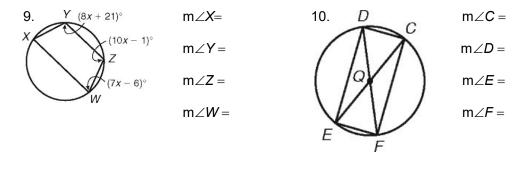
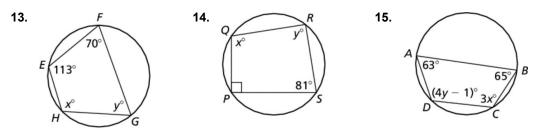

15.2 and 15.3

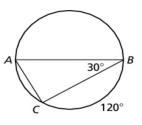
Each quadrilateral described is inscribed in a circle. Determine the angle measures.

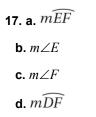

1.Quadrilat $m \angle B = 82^{\circ}$.	eral <i>ABCD</i> has	m∠ A = 53° and	2.Quadrilateral <i>RSTU</i> has $m \angle S = 104^{\circ}$ and $m \angle T = 55^{\circ}$.	
m∠ C =	m∠l	D =	m∠ <i>R</i> =	m∠ <i>U</i> =
3. Quadrilateral <i>JKLM</i> has $m \angle J = 90^\circ$ and $\angle K \cong \angle M$.			4.Quadrilateral <i>RSTU</i> has $m \angle S = 35^{\circ}$ and $m \angle T = 120^{\circ}$.	
m∠ <i>K</i> =	m∠ <i>L</i> =	m∠ <i>M</i> =	m∠ <i>R</i> =	m∠ <i>U</i> =

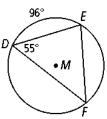
Determine whether each quadrilateral can be inscribed in a circle. If it cannot be determined, say so.

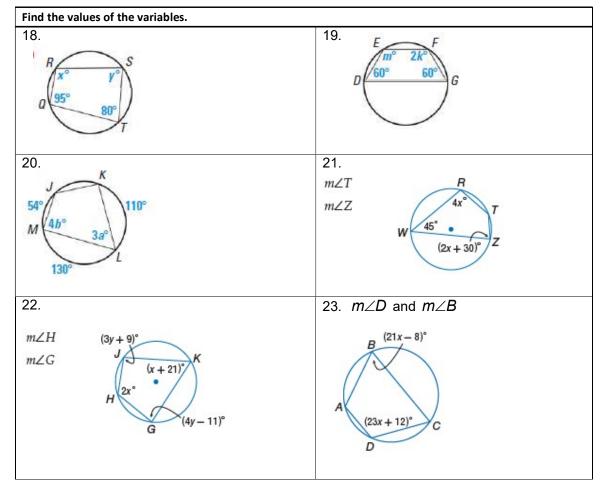


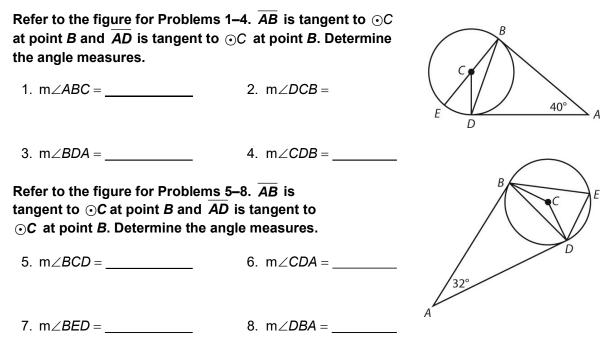
For each inscribed quadrilateral, determine the angle measures.



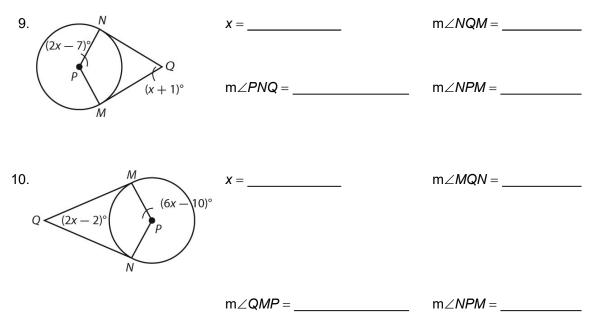

In Exercises 13-15, find the value of each variable.

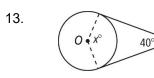


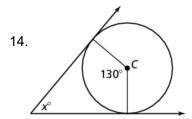

16. Determine whether \overline{AB} is a diameter of the circle. Explain your reasoning.

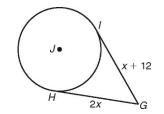


Find each indicated measure for $\bigcirc M$.

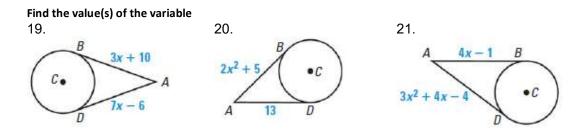



In Problems 9 and 10, \overline{QM} is tangent to $\odot P$ at point *M* and \overline{QN} is tangent to $\odot P$ at point *P*. Solve for the variable and determine the angle measures.




In Problems 11 and 12, \overline{EF} is tangent to $\odot H$ at point F and \overline{EG} is tangent to $\odot H$ at point G. Determine the length of \overline{EF} .

In Exercises 13 - 14, find the value of x



Refer to the figure for Problems 15 - 18. \overline{GH} is tangent to $\odot J$ at point *H* and \overline{GI} is tangent to $\odot J$ at point *I*. Answer the questions to determine the length of \overline{GH} . The first one is done for you.

- 15. How are \overline{GH} and \overline{GI} related?
- 16. Write an equation to solve for *x*.
- 17. Solve the equation. What is the value of x?
- 18. What is GH?

15-3 A (Geometry) Factoring and Solving Quadratic Equations Review.

Factor each trinomial. 1. x^2 + 13x + 36	2. $x^2 + 11x + 24$	3. x ² + 14x + 40
7. $x^2 - 7x + 6$	8. x ² - 9x + 14	9. x ² - 11x + 24
13. x ² - x - 2	14. x ² - 3x - 18	15. x ² - 4x - 45
19. x ² - 6x + 5	20. x ² - 9x + 18	21. x ² - 12x + 32

Solve each quadratic equation by factoring. 26. $x^2 - 3x + 2 = 0$ 27. $x^2 - 4x + 3 = 0$

30.
$$x^2 - 6x + 5 = 0$$
 31. $x^2 + 16x + 28 = 0$

32.
$$x^2 + 10x + 9 = 0$$
 33. $x^2 - 12x + 32 = 0$

34. $x^2 + 13x + 42 = 0$ 35. $x^2 - 7x + 12 = 0$