Warm Up

 $m \angle A = \underline{73}$

m∠C =<u>3</u>

 $m\widehat{BC} = \underline{146}$

 $m\widehat{AD} = 62$

a. mCB=180-135=45
b. mCBF = 180
c. mFD=45+81=126
d. mDBF=135+45+54 = 234 $m \angle C = \frac{40}{80}$ $m \widehat{AB} = \frac{80}{80}$

40

90

50°

80

180 - 90 - 50

3.

Inscribed Quadrilaterals

• If all the vertices of a polygon lie on a circle, the polygon is <u>inscribed</u> in the circle.

If $m \angle B = 85^\circ$, what other measurements can you find?

 $\frac{39+7x+6x-15=180}{13x+24} = \frac{180}{-24}$ $-\frac{13x+24}{-24} = \frac{180}{-24}$ $\frac{13x+24}{-24} = \frac{136}{13}$ $\frac{13x+156}{13}$ x = 12

Tangents and Circumscribed Angles

<u>Def.</u> A <u>tangent</u> is a line that intersects the circle at exactly one point.

<u>Def.</u> The point at which a tangent line intersects a circle is the <u>point of tangency</u>.

<u>Thm.</u> A tangent is perpendicular to the radius at the point of tangency.

<u>Ex.</u> If \overline{RQ} is tangent, find $m \angle R$.

Ex. Show that \overline{DE} is tangent to $\bigcirc F$.

<u>Ex.</u> Find the radius of $\bigcirc A$ if \overline{BC} is tangent.

8+ 8 X A16 R $(8+x)^{2} = (8+x)(8+x)$ First = -64+8x+8x+x^{2} outer = -64+16x+x^{2} Tuber Inner Last

 $a^{2}+b^{2}=c^{2}$ $\chi^{2}+16^{2}=(8+\chi)^{2}$ $\chi^{+}16 - (-)$ $\chi^{+}256 = 64 + 16 \times 1 \times 16$ $-\chi^{2}$ $256 = 64 + 16 \times \frac{-64}{-64} - 64$ 192 = 16 × x=1

<u>Def.</u> A <u>circumscribed angle</u> is an angle formed by two lines that are tangent to the same circle.

<u>Thm.</u> A circumscribed angle and its central angle are supplementary

<u>Thm.</u> If two segments come from the same exterior point and are tangent to the same circle, then they are congruent.

$$\frac{y^{2}}{(y+2)(y+4)} \xrightarrow{y^{2}} + \underbrace{6y}_{0} \xrightarrow{y}_{0} \xrightarrow{y}_{0} \xrightarrow{y}_{0}} \xrightarrow{y}_{0} \xrightarrow{y$$

Ex. Factor
$$x^2 + 10x - 24 = (x + \frac{12}{x})(x + \frac{2}{x})$$

Pract. Factor
$$x^2 - 13x + 40 = (x + -8)(x + -5)$$

Pract. Factor
$$x^2 - 7x - 30 = (x + \frac{-10}{2})(x + \frac{3}{2})$$

Pract. Factor
$$x^2 + 12x + 27 = (x + 9)(x + 3)$$

<u>Note:</u> "Factor" means your answer is the parentheses. "Solve" means you aren't done until *x* equals a number

Ex. Solve
$$x^2 - 7x + 12 = 0$$

 $(x + \frac{-3}{3})(x + \frac{-4}{7}) = 0$
 $x - 3 = 0$
 $x - 4 = 0$
 $\overline{x - 4} = 0$
 $\overline{x - 4} = 0$
 $\overline{x - 4} = 0$

Pract. Solve
$$x^2 + 10x - 24 = 0$$

 $(x + \frac{12}{x})(x + \frac{-2}{x}) = 0$
 $x + 12 = 0$ $x - 2 = 0$
 $x + 12 = 0$ $x - 2 = 0$
 $x - 2 = 0$
 $x = -12$ $x = 2$