All of these describe the same thing:

- Translate along the vector $\langle -5, -2 \rangle$
- Translate using coordinate notation $(x, y) \rightarrow (x 5, y 2)$
- Translate left 5 units and down 2 unit

2.2 Reflections

The <u>perpendicular bisector</u> of a segment is a line that is perpendicular to the segment and bisects the segment.

A <u>reflection</u> is another type of transformation that makes the mirror image of a figure.

<u>Ex.</u> Draw the reflection of L(2,3) over the x-axis.

<u>Ex.</u> Draw the reflection of L(2,3) over the y-axis.

For some reflections, we can write the coordinate notation:

Rules for Reflections on a Coordinate Plane				
Reflection across the x-axis	$(x, y) \rightarrow (x, -y)$			
Reflection across the y-axis	$(x, y) \rightarrow (-x, y)$			
Reflection across the line $y = x$	$(x, y) \rightarrow (y, x)$			
Reflection across the line $y = -x$	$(x, y) \rightarrow (-y, -x)$			

Ex. Consider the points D(2,0), E(2,2), and F(5,1).

- a) Find the image coordinates after reflecting over the *x*-axis.
- b) Graph the pre-image and image coordinates.

$$(\chi, \gamma) \rightarrow (\chi, -\gamma)$$
$$D(2, 0) \longrightarrow D'(2, 0)$$
$$E(2, 2) \longrightarrow E'(2, -2)$$
$$F(5, 1) \longrightarrow F'(5, -1)$$

		y				
	4-					
	2		E			F
_			ol		\geq	X
	0		D'	٤.		F
	2-		e' ·			
	,					

Rules for Reflections on a Coordinate Plane				
Reflection across the x-axis	$(x, y) \rightarrow (x, -y)$			
Reflection across the y-axis	$(x, y) \rightarrow (-x, y)$			
Reflection across the line $y = x$	$(x, y) \rightarrow (y, x)$			
Reflection across the line $y = -x$	$(x, y) \rightarrow (-y, -x)$			

Ex. Consider the points S(3,4), T(-2,4), and U(-2,1).

- a) Find the image coordinates after reflecting over the line y = x.
- b) Graph the pre-image and image coordinates.

 $(\mathbf{x},\mathbf{y}) \rightarrow (\mathbf{y},\mathbf{x})$

$$S(3,4) \rightarrow S'(4,3)$$

$$T(-2,4) \rightarrow T'(4,-2)$$

$$Y(-2,1) \rightarrow U'(1,-2)$$

Rules for Reflections on a Coordinate Plane				
Reflection across the x-axis	$(x, y) \rightarrow (x, -y)$			
Reflection across the y-axis	$(x, y) \rightarrow (-x, y)$			
Reflection across the line $y = x$	$(x, y) \rightarrow (y, x)$			
Reflection across the line $y = -x$	$(x, y) \rightarrow (-y, -x)$			

Ex. Consider the points A(-4, -2), B(-1, -1), and C(-1, -4).

- a) Find the image coordinates after reflecting over the *y*-axis.
- b) Graph the pre-image and image coordinates.

$$\begin{array}{c} (\chi, \chi) \rightarrow (-\chi, \chi) \\ A(-4, -2) & A'(4, -2) \\ B(-1, -1) & B'(1, -1) \\ C(-1, -4) & C'(1, -4) \end{array}$$

Rules for Reflections on a Coordinate Plane				
Reflection across the x-axis	$(x, y) \rightarrow (x, -y)$			
Reflection across the y-axis	$(x, y) \rightarrow (-x, y)$			
Reflection across the line $y = x$	$(x, y) \rightarrow (y, x)$			
Reflection across the line $y = -x$	$(x, y) \rightarrow (-y, -x)$			

<u>Ex.</u> Draw the reflection of $\triangle ABC$ across line ℓ .

- 1) Find slope of line of mirror
- 2) Find the opposite reciprocal of that slope (ex: 3/4 → -4/3)
- 3) From each point in the pre-image, draw a line with the slope from step 2.
- 4) Find a point on each line that is the same distance from the mirror as the preimage point. These are your image points.

<u>Ex.</u> Draw the reflection of $\triangle ABC$ across line ℓ .

- 1) Find slope of line of mirror
- 2) Find the opposite reciprocal of that slope (ex: 3/4 → -4/3)
- 3) From each point in the pre-image, draw a line with the slope from step 2.
- 4) Find a point on each line that is the same distance from the mirror as the preimage point. These are your image points.

<u>Ex.</u> Draw the reflection of $\triangle ABC$ across line ℓ .

- 1) Find slope of line of mirror
- 2) Find the opposite reciprocal of that slope (ex: 3/4 → -4/3)
- 3) From each point in the pre-image, draw a line with the slope from step 2.
- 4) Find a point on each line that is the same distance from the mirror as the preimage point. These are your image points.

Ex. Draw the line of reflection.

Ex. Draw the line of reflection.

Ex. Draw the line of reflection.

