New seats today, you may sit where you wish.

Don't forget about quiz retakes.

3.1 Sequences of Transformations

When doing a sequence of transformations, we will use "double prime".

Ex. Draw the image of $\triangle A B C$ after a reflection over line ℓ, followed by a translation along vector v.

When we work with coordinates, we can write the coordinate notation for the sequence of transformations.

Ex. Describe the sequence of transformations in words, and then draw the images.

$$
(x, y) \rightarrow(x,-y) \rightarrow(x-7, y+2)
$$

reflect over

$$
x \text {-axis }
$$

Ex. Describe the sequence of transformations in words, and then draw the images.

$$
(x, y) \rightarrow \underset{\substack{\text { reflect over } \\ y \text {-axis }}}{(-x, y)} \rightarrow \frac{(x+1, y-6)}{\text { shift right } 1} \text { and down } 6
$$

Ex. Draw the images if $\triangle L M N$ is translated along the vector $\langle-2,3\rangle$ and then reflected over the x-axis. Then write the coordinate notation.

$$
(x, y) \rightarrow(x-2, y+3) \rightarrow(x,-y)
$$

All of the transformations we've done - translations, reflections, rotations - are called rigid motions because they don't change the object.

- The figures are congruent because they are the same shape and size.

$$
D C E F \cong J K L M
$$

Ex. Explain why $J K L M \cong W X Y Z$.
reflect over x-axis
translate left 2
down 1

