Triangles and Other Polygons

Thm. Triangle Sum Theorem
The interior angles of a triangle add up to 180°

$$
x+y+z=180
$$

"Interior" and "Exterior" Angles

Thm. Exterior Angle Theorem

An exterior angle equals the sum of the two nonadjacent interior angles.

Ex. Find the value of x.

$$
\begin{gathered}
2 x+3 x+55=180 \\
5 x+55=180 \\
5 x=125 \\
x=25
\end{gathered}
$$

Ex. Solve for x.

$$
\begin{aligned}
& \text { outside = inside inside } \\
& 6 x-7=2 x+103-x \\
& \begin{array}{l}
6 x-7=x+103 \\
-x
\end{array} \\
& \begin{array}{r}
5 x-y=103 \\
+77
\end{array} \\
& \frac{5 x}{5}=1 \frac{10}{5} \\
& x=22
\end{aligned}
$$

Ex. Solve for $m \angle N$.

$$
m L N=3(10)+7=37
$$

$$
\begin{gathered}
\text { outside }=\text { inside inside } \\
5 x+50=3 x+7+63 \\
5 x+50=3 x+70 \\
-3 x \\
-3 x \quad \\
2 x+50=70 \\
-50 \\
5 x=\frac{20}{2} \\
5=10
\end{gathered}
$$

What Is a Polygon?

Def. A polygon is a flat shape that has many sides.

\leftarrow This is polygon "FPMHTA"
(notice that the letters go around in order)

Def. A polygon is called regular if all sides and angles in the polygon are congruent.
Def. A diagonal connects two non-adjacent vertices.

Naming Polygons

\# of Sides	Name
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	Decagon
12	Dodecagon
n	n-gon

180°

$2(180)=360$

$$
3(180)=540 .
$$

5 sides $\rightarrow 3$ triangles

6 sides $\rightarrow 4$ triangles

$$
4(180)=720
$$

7 sides $\rightarrow 5$ triangles
$5(180)=900$

sides $\rightarrow 6$ triangle
$6(180)=1080$

The. Interior Angles Theorem
If a polygon has n sides. then the sum of the interior angles is $\longrightarrow n-2$ triangles

$$
S=180(n-2)
$$

Ex. Find the sum of the interior angles of a dodecagon.
12 sides $\rightarrow 10$ triangles $\rightarrow 180(10)=1800$

Ex. Solve for x.
9 sides $\rightarrow 7$ triangles

$$
\begin{aligned}
& \rightarrow 7(180)=1260 \\
& 1260 \\
& -125 \\
& -130 \\
& -172 \\
& -200 \\
& -140 \\
& -102 \\
& -98 \\
& -135 \\
& \frac{158}{}
\end{aligned}
$$

Ex. Find the measure of the fourth interior angle of a quadrilateral if the other three measures are $89^{\circ}, 80^{\circ}$, and 104°.

$$
4 \text { side } \rightarrow 2 \text { triangles } \rightarrow \begin{aligned}
& 2(180)=360 \\
&-89 \\
&-80 \\
&-104 \\
& \hline 87
\end{aligned}
$$

