Triangles and Other Polygons

<u>Thm.</u> Triangle Sum Theorem

The interior angles of a triangle add up to 180°

$$x + y + z = 180$$

"Interior" and "Exterior" Angles

Thm. Exterior Angle Theorem

An exterior angle equals the sum of the two nonadjacent interior angles.

Ex. Find the value of *x*.

2x + 3x + 55 = 1805x + 55 = 1805x = 125 x = 25

<u>Ex.</u> Solve for x.

outside = inside + inside

 $6 \times -7 = 2 \times + \frac{103 - x}{103 - x}$ $6 \times -7 = \frac{x}{103}$ $-x - \frac{x}{103}$ $5_{x} - 7 = 103$ 477 + 7 $5_{x} = 110$ $\frac{10}{5}$

outside = inside + inside 5x+50=3x+7+63 $5 \times +50 = 3 \times +70$ -3 × -3 × 2x + 50 = 70 $\frac{7}{4} = \frac{20}{2}$ $\frac{1}{4} = 10$

What Is a Polygon?

<u>Def.</u> A <u>polygon</u> is a flat shape that has many sides.

<u>Def.</u> A polygon is called <u>regular</u> if all sides and angles in the polygon are congruent.

Def. A diagonal connects two non-adjacent vertices.

Naming Polygons

# of Sides	Name
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	Decagon
12	Dodecagon
n	<i>n</i> -gon

<u>Thm.</u> Interior Angles Theorem

If a polygon has n sides, then the sum of the interior angles is n-2 triangles S = 180(n-2)

Ex. Find the sum of the interior angles of a dodecagon. 12 sides $\rightarrow 10$ triangles $\rightarrow 180(10) = 1800$

Ex. Find the measure of the fourth interior angle of a quadrilateral if the other three measures are 89° , 80° , and 104° .

4 side -> 2 triangles -> 2(180)=360 -89 -80 <u>-104</u> 87