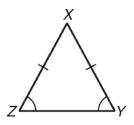
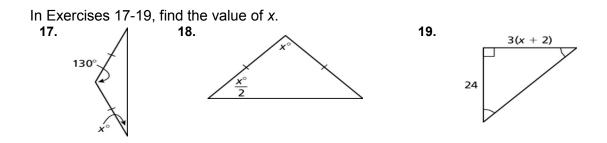
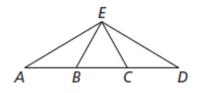

Use principles of isosceles and equilateral triangles to answer Problems 7-9.


7. Point *M* lies on side *JL* of triangle *JKL*. \overline{KM} bisects \overline{JL} and forms equilateral triangle *KLM*. What is the measure of $\angle J$? ______° Make a sketch and explain your answer.


Name the parts of the figure. The first one is done for you.

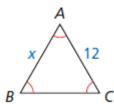
- 10. base: **ZY**
- 11. legs: _____ and _____
- 12. base angles: _____ and _____
- 13. vertex angle: _____

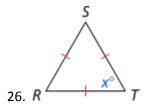
Find each value. The first one is done for you.

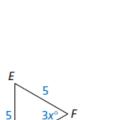


In Exercises 20 – 23, copy and complete the statement. Give reasons for each.

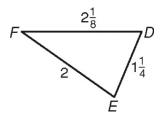
20. If $\overline{AE} \cong \overline{DE}$, then $\angle _ \cong \angle _$. 21. If $\overline{AB} \cong \overline{EB}$, then $\angle _ \cong \angle _$. 22. If $\angle D \cong \angle CED$, then $_ \cong _$. 23. If $\angle EBC \cong \angle ECB$, then $_ \cong _$.

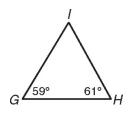

М


60° 16


60

In Exercises 24 – 27, find the value of *x*.


25.


For Problems 1–3, name the angles or sides.

1. Write the angles of $\triangle DEF$ in order from smallest to largest.

∠____ ∠____

2. Write the sides of $\triangle GHI$ in order from shortest to longest.

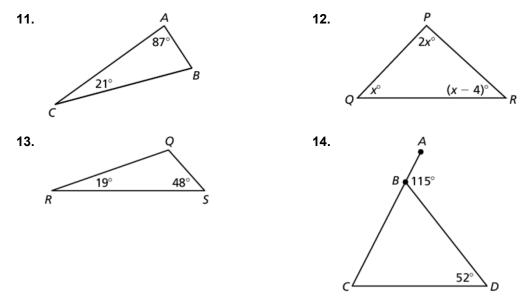
3. The sides of triangle *XYZ* are given in order below from longest to shortest. Name the angles from largest to smallest.

XZ	ZY	<u>YX</u>
۷	۷	۷

Use your knowledge of triangle inequalities to solve Problems 4–5.

4. Can three segments with lengths 8, 15, and 6 make a triangle? Explain your answer.

5. Aaron, Brandon, and Clara sit in class so that they are at the vertices of a triangle. It is 15 feet from Aaron to Brandon, and it is 8 feet from Brandon to Clara. Give the range of possible distances, *d*, from Aaron to Clara.


For Problems 6-8, choose the correct words to complete the statements. The first one is done for you.

- 6. The longest side of a triangle is opposite the **largest** (largest/smallest) angle.
- 7. The sum of any two side lengths of a triangle is ______ (less than/greater than) the third side length.
- 8 The smallest angle of a triangle is _____ (next to/opposite) the shortest side.

In Exercises 9 and 10, list the angles of the given triangle from smallest to largest.

9. 10. 5*x* 8x

In Exercises 11-14, list the sides of the given triangle from shortest to longest.

In Exercises 15 - 20, is it possible to construct a triangle with the given side lengths? Explain.

15. 15, 37, 53	16. 9, 16, 8
17. 6, 7, 11	18. 3, 6, 9
19. 28, 17, 46	20. 35, 120, 125

21. Is it possible to construct a triangle with side lengths 5(2x - 6), 3x + 80, and $x^2 + 41$ if x = 9? Explain.

22. In $\triangle DEF$, $m \ge D = (x + 25)^\circ$, $m \ge E = (2x - 4)^\circ$, and $m \ge F = 63^\circ$. List the side lengths and angle measures of the triangle in order from least to greatest.

In Exercises 23 - 26, describe the possible lengths of the third side of the triangle given the lengths of the other two sides.

23. 5 inches, 12 inches

24. 12 feet, 18 feet

25. 2 feet, 40 inches

26. 25 meters, 25 meters