Warm Up

1. Find the sum of the angles in a polygon with 21 sides

7.2 Isosceles and Equilateral Triangles

An isosceles triangle is a triangle with at least two congruent sides.
The congruent sides are called the legs of the triangle.

The side opposite the vertex angle is the base.

BASE

Isosceles Triangle Theorem: In an isosceles triangle, the angles across from the congruent sides are congruent.

Converse of the Isosceles Triangle Theorem:

If two angles in a triangle are congruent, then the sides opposite the angles are also congruent.

Ex. Find the missing angles.

$$
\begin{array}{r}
30+30+b=180 \\
b=120
\end{array}
$$

Ex. Find the missing angles.

$$
\frac{180}{3}=60
$$

An equilateral triangle is a triangle with three congruent sides.
An equiangular triangle is a triangle with three congruent angles.

Equilateral Triangle Theorem

If a triangle is equilateral, then it is equiangular.

Ex. Solve for x and y.

$$
\begin{gathered}
3 x-11=2 x+11 \\
-2 x+2 x \\
x-11=11 \\
211+11 \\
x=22
\end{gathered}
$$

$$
\begin{aligned}
& x \text { and } y . 2(22)+11 \\
& \hline(3 x-11)^{\circ}=55 \\
& 55^{\circ}
\end{aligned}
$$

7.3 Triangle Inequalities

Try to draw a triangle with sides $2 \mathrm{~cm}, 2 \mathrm{~cm}$, and 6 cm .

Too short!

What if I tried 3, 3, and 6 cm ?

Still doesn' t work!

Thm. Triangle Inequality

The sum of two sides of a triangle must be greater than the third side.

$$
\begin{aligned}
& a+b>c \\
& a+c>b \\
& b+c>a
\end{aligned}
$$

*add the 2 small sides and make sure that the total is bigger than the $3^{\text {rd }}$ side.

Ex. Is it possible to construct a triangle with the given side lengths?
a. $3,4,5$

$3+4>5$ yes

b. $1,4,6$
$1+4 \geqslant 3$ no
c. $2.2,2.6,4.8$
$2.2+2.6 \stackrel{?}{>} 4.8$
no

Determine if a triangle can be formed with the given side lengths. Explain your reasoning.
6. 12 units, 4 units, 17 units

$$
12+4 \stackrel{?}{?} 17
$$

no
7. $24 \mathrm{~cm}, 8 \mathrm{~cm}, 30 \mathrm{~cm}$

$$
24+8 \stackrel{?}{>} 30
$$

yes

Ex. If two sides of a triangle have the following measures, between what two numbers must the $3^{\text {rd }}$ side lie?
a. $3 \mathrm{ft}, 8 \mathrm{ft}$

$$
\begin{aligned}
& 8-3=5 \\
& 8+3=11
\end{aligned}
$$

Third side is
b. efren 5 in and 11 .
$\begin{array}{ll}12 & 12 \\ \frac{-6}{6} & \frac{56}{18}\end{array}$ between 6 and 18
Trick!
Subtract the two sides to find the lowest and add to find the highest.

Find the range of values for x using the Triangle Inequality Theorem.
9.

$$
\begin{array}{rr}
21 & 21 \\
-14 & +14 \\
\hline 7 & 35
\end{array}
$$

between 7 and 35
10.

$$
\begin{array}{rc}
18 \\
18 & 18 \\
-9 & +9 \\
\hline 9 & 27
\end{array}
$$

$$
\text { between } 9 \text { and } 27
$$

Thm. The longest side of a triangle is across from the largest angle.

Ex. List the sides and angles in order from smallest to largest.

Sides:
Angles:
$\frac{\overline{A B}}{\overline{B C}} \overline{A C}$
$\angle C$
$\angle A$
$\angle B$

Ex. List the sides and angles in order from smallest to largest.

Ex. In $\triangle A B C, m \angle A=3 x+15, m \angle B=2 x$, and $m \angle C=65$.
Find x and the measure of each angle, and then list the sides in order from shortest to longest.

$$
\begin{gathered}
\frac{3 x+15}{}+\underset{2 x}{2 x}+\underset{=180}{65}=180 \\
50=180 \\
5 x=100 \\
x=20 \\
\overline{A C}, \overline{B A}, \overline{B C}
\end{gathered}
$$

