\qquad
\qquad
LEsson Properties of Rectangles, Rhombuses, and Squares
Practice and Problem Solving: A/B
Tell whether each figure is a parallelogram, rectangle, rhombus, or square based on the information given. Use the most specific name possible.

2.

3.

4.

A modern artist's sculpture has rectangular faces. The face shown here is $\mathbf{9}$ feet long and 4 feet wide. Find each measure in simplest radical form. (Hint: Use the Pythagorean Theorem.)
5. $D C=$
6. $A D=$ 4

7. $D B=$

8. $A E=\frac{1}{2} \sqrt{97}=4,9$

$V W X Y$ is a rhombus. Find each measure.

$$
\begin{gathered}
6 m-12=4 m+4 \\
2 m=16 \\
m=8
\end{gathered}
$$

9. $X Y=$ 10. $\mathrm{m} \angle Y V W=107$
10. $\mathrm{m} \angle \mathrm{VYX}=$

$$
\begin{aligned}
& l v y= \\
& 180-(53.5) \cdot 2 \\
& =73
\end{aligned}
$$

12. $\mathrm{m} \angle X Y Z=$
$\frac{1}{2}(73)$

$$
=36.5
$$

$3 n^{2}-75=90$
$3 n^{2}=90,75$
$n^{2}=30,25$
In Exercises 13 and 14, find the lengths of the diagonals of rectangle JKLM.

$$
\text { 13. } \begin{gathered}
J L=3 x+4 \\
K M=4 x-1 \\
3 x+4=4 x^{-} \\
5=x \\
J L=3(5)+4=19
\end{gathered}
$$

$$
\text { 14. } \begin{aligned}
& J L=2 x-6 \\
& K M=\frac{3}{2} x+1 \\
& 2 x-6=\frac{3}{2} x+1 \\
& \frac{1}{2} x=7 \\
& x=14 \\
& J L=2(14)-6=22 \\
& K M=22
\end{aligned}
$$

$$
n=5.5
$$

\qquad
\qquad
\qquad
In Exercises 15-19, the diagonals of rhombus $A B C D$ intersect at E. Given that
$m \angle E A D=67^{\circ}, C E=5$, and $D E=12$, find the indicated measure.
15. $m \angle A E D=90$
16. $m \angle A D E=23$
17. $m \angle B A E=67$

18. $A E$ $=5$

Find the length of the diagonals of rectangle QRST given the following information.
21. $Q S=4 x+6, R T=6 x-4$

$$
\begin{aligned}
4 x+6 & =6 x-y \\
10 & =2 x \\
x & =5
\end{aligned}
$$

$$
Q S=4(5)+6=26
$$

$$
R T=26
$$

22. $Q S=9 x+12, R T=11 x-10$

$$
Q S=9(11)+12=111
$$

$$
\begin{aligned}
9 x+12,12 & =11 x-10 \\
9 x+12 & =2 x \\
x & =11
\end{aligned}
$$

$$
R T=111
$$

Find the measures of the numbered angles in each rhombus.
23.

24.

$m L 4=90$
$m L 3=68$
$m \angle 2=68$
$m \angle 1=90-68$
$=22$
25.

26.

$m \angle 4=70$

In Exercises 27 - 30, find the lengths of the diagonals of rectangle $W X Y Z$.
27. $W Y=6 x-7 \quad$ b $x-7=3 x+2$

$$
x z=3 x+2
$$

$w Y=6(3)-7=11 \quad 3 x=9$
$X Z=11 \quad x=3$
29. $W Y=24 x-8 \quad 24 x-8=-18 x+13$

$$
x z=-18 x+13
$$

$42 x=21$
$W Y=24(1 / 2)-8=4$

$x z=4$
28. $W Y=14 x+10$
$x Z=11 x+22$
$14 x+10=11 x+22$

$$
\begin{array}{ll}
W Y=14(y)+10=66 & 3 x=12 \\
x z=66 & x=4
\end{array}
$$

30. $W Y=16 x+2 \quad \mid 6 x+2=36 x-6$ $x Z=36 x-6 \quad 8=20 x$
$W Y=16\left(\frac{2}{5}\right)+2=8,4 \quad X=\frac{2}{5}$
$x z=8.4$
In Exercises 31-36, the diagonals of rhombus $A B C D$ intersect at E. Given that $m \angle B A C=53^{\circ}, D E=8$, and $E C=6$, find the indicated measure.
31. $m \angle D A C=53$
32. $m \angle A E D=90$
33. $m \angle A D C=180-2(53)$
34. $D B=16$
35. $A E=6$
$=74$
36. $A C=12$

37. Use rhombus $X Y Z W$ with $m \angle W Y Z=53^{\circ}, V W=3, X V=2 a-2$, and $Z V=\frac{5 a+1}{4}$
A. Find $m \angle Y Z V=90-53=37 \quad 2 a-2=\frac{5 a+1}{4}$
B. Find $m \angle X Y W=53$

$4(2 a-2)=5 a+1$ $8 a-8=5 a+1$ 39
$a=9$
$a=3$
c. Find $x z=2(2 \cdot 3-2)=8$
D. Find $x W=5$

$$
\begin{aligned}
3^{2}+4^{2} & =x^{2} \\
9+16 & =x^{2} \\
25 & =x^{2} \\
x & =5
\end{aligned}
$$

