Warm up Problem

Proofs

<u>Def.</u> A <u>proof</u> is a logical argument in which every statement is backed up by an explanation.

→For our proofs today, we'll be using the Properties of Equality.

Name	Property of Equality
Addition Property	If $a = b$, then $a + c = b + c$
Subtraction Property	If $a = b$, then $a - c = b - c$
Multiplication Property	If $a = b$, then $ac = bc$
Division Property	If $a = b$, then $\frac{a}{c} = \frac{b}{c}$, $c \neq 0$
Distributive Property	If $a(x + b)$, then $ax + ab$
Substitution Property	If $a = b$, then a can be replaced by b

Reflexive Property	a = a
Symmetric Property	If $a = b$, then $b = a$
Transitive Property	If $a = b$ and $b = c$, then $a = c$
Simplify	This allows you to combine like terms on the same side of the equal sign.

Statement	Reason
If $4(x + 7)$, then $4x + 28$	Dist.
$\overline{BD} \cong \overline{BD}$	Reflex.
If $2x + 5 = 9$, then $2x = 4$	Subtr. Prop.
If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$	Trans. Prop.
If $x - 7 = 2$, then $x = 9$	Add. Prop.
If $\overline{XY} \cong \overline{AB}$, then $\overline{AB} \cong \overline{XY}$	Sym. Prop.
If $4x = 12$, then $x = 3$	Div. Prop.

<u>Ex.</u> Given: $4x - 7 = 6x + 7$		
Prove: $x = -7$		
Statements	Reasons	
1) $4x - 7 = 6x + 7$	1) Given	
z) $4x = 6x + 14$	z) Add. Prop.	
3) $-2x = 14$	3) Subtr. Prop.	
4) $x = -7$	4) Div. Prop.	

Ex. Complete the proof:
Given:
$$3x - 2 = x + 8$$

Prove: $x = 5$ ReasonsStatementsReasons1) $3 \times -2 = x + 8$
2) $-2 = -2 \times + 8$
3) $-10 = -2 \times 8$
4) $5 = \times 8$
5) $\times = 5$ 1) Given
2) Subtr. Prop.
3) Subtr. Prop.4) $5 = \times 8$
5) $\times = 5$ 2) Sym. Prop.

Pract. Complete the proof:
Given:
$$\frac{3x+5}{2} = 7$$

Prove: $x = 3$ Reasons1. $\frac{3x+5}{2} = 7$
2.1.Given
2.2. $3x+5=14$
3.2.Nult.Brep.
4.3. $3x = 9$
4.3.Subtr.Prop.
4.4. $x = 3$ 4.Div.Prop.

4. x = 3

Pract. Complete the proof:			
Given: $-2x + 5 = 8$			
Prove: $x = -\frac{3}{2}$	1		
Statements	Reasons		
1) $-2x+5=8$	1) Given		
2) $-2x = 3$	z) Subtr. Prop.		
3) $\chi = \frac{3}{-2}$	3) Div. Brop.		