Warm Up
$\triangle L M N \cong \triangle C B A$. Find each value.

$$
\begin{gathered}
90+30+m \angle L=180 \\
120+m \angle L=180
\end{gathered}
$$

$$
7 z+6=90
$$

$$
7 z=84
$$

$$
z=12
$$

$$
m \angle L=60
$$

$$
\begin{gathered}
5 y=90 \\
y=18
\end{gathered}
$$

1. $z=12$
2. $y=$ \qquad 18
3. $\mathrm{m} \angle \mathrm{C}=60^{\circ}$
4. $L N=$ 24
$L N=2(18)-12$
$L N=24$

$$
\begin{gathered}
m \angle C=m \angle L \\
m \angle C=60
\end{gathered}
$$

3. $\mathrm{m} \angle L=60^{\circ}$
4. $A C=$ \qquad

$$
A C=12+12
$$

$$
A C=24
$$

(also, $A C=L N$)

Marking Congruent Triangles

Side-Angle-Side (SAS)

Side-Side-Side (SSS)

Angle-Angle-Side (AAS)

Hypotenuse-Leg (HL)

Does AAA work?

Does AAA work?
NO!

Does SSA work?

There is no SSA in geometry!

Very Important

Other that the "given" information, you can only mark three things:

1. Shared Side (Overlapping Side)
or a Shared Angle
2. Vertical Angles
3. Alternate Interior Angles (only if lines parallel).

Shared Side

Vertical Angles

Alternate Interior Angles (only if lines parallel)

statement
reason
$\angle B \cong \angle D$
Alt. Int. L's

Decide whether the triangles are congruent. Explain your reasoning.

SSS SAS

Yes, SAS ASA AAS HL

Decide whether the triangles are congruent. Explain your reasoning.

Decide whether the triangles are congruent. Explain your reasoning.

Decide whether the triangles are congruent. Explain your reasoning.

Decide whether the triangles are congruent. Explain your reasoning.

- Angle Bisectors:

- Segment Bisectors: $\quad " \overline{B D}$ bisects $\overline{A C} "$

" $\overline{A C}$ bisects $\angle B A D$ "

$" \overline{B D}$ bisects $\overline{A E}$ " or " C bisects $\overline{A E}$ "

- Midpoints:
" D is midpoint of $\overline{A C}$ "

" C is midpoint of $\overline{B D} "$

- Perpendicular Lines: $\quad " \overline{B D} \perp \overline{A C} "$

- Parallel Lines:

*Remember: Parallel does NOT mean Congruent, but you can get congruent $9 / f$. int. L's

1. C bisects $\overline{A E}$ and $\overline{B D}$

$\Delta \mathrm{ABC} \cong \triangle E D C$ by SAS
2. $\overline{A B} \| \overline{E D}, \overline{A B} \cong \overline{E D}$

$\triangle \mathrm{BCA} \cong \triangle D C E$
by $A A S$
3. $\angle A \cong \angle E, \overline{B C} \cong \overline{D C}$

$$
\begin{aligned}
& \triangle \mathrm{ABC} \cong \triangle E D C \\
& \text { by A AS }
\end{aligned}
$$

4. $\angle B \cong \angle D, \overline{A B} \cong \overline{E D}$

$\triangle \mathrm{CAB} \cong \triangle C E D$
by A AS
5. $\overline{A C}$ bisects $\angle B C D, \overline{B C} \cong \overline{D C}$

$\triangle A C B=\triangle A C D$
by $S A S$
6. $\overline{A B} \cong \overline{A D}, \overline{B C} \cong \overline{D C}$

$$
\begin{aligned}
& \triangle C A B=\triangle C A D \\
& b y S S S
\end{aligned}
$$

7. $\angle B A C \cong \angle D A C, \angle B \cong \angle D$

8. $\overline{B D} \perp \overline{A C}, \mathrm{D}$ is midpoint of $\overline{A C}$

9. $\overline{A C}$ bisects $\angle B A D$ and $\angle B C D$

$\triangle A B C \therefore \triangle A D C$

10. $\overline{B D} \perp \overline{A C}, \angle \mathrm{~A} \cong \angle C$

$$
\triangle B A D \equiv \triangle B C D
$$

by $A A S$
11. $\overline{B D}$ bisects $\angle A B C, \overline{B A} \cong \overline{B C}$

$\triangle A D B \cong \triangle C D B$
by SAS
12. $\overline{B D}$ bisects $\overline{A C}, \overline{B A} \cong \overline{B C}$

$\triangle A D B \cong \triangle C D B$
by SSS

