Warm Up

What is a Proof?

- A proof is a "deductive argument for a mathematical statement"
- i.e. It's an answer to the question "Why?", where you support your reasoning with definitions, theorems and other given facts.

Example Proof

Given: N is the midpoint of $\overline{\mathrm{LW}}$ N is the midpoint of SK
Prove: $\triangle L N S \cong \triangle W N K$

Hints on Proofs

If two triangles share a side, then you will probably use the __reflexive__ property.

Hints on Proofs

If you have vertical angles, you will probably use vertical__angles_in the proof.

Hints on Proofs

If you are given "midpoint" or "bisects", then you WILL use __def. of midpoint __,

_def. of segment bisector , or
__def. of angle bisector in the proof.

Hints on Proofs

If you are given parallel lines, then you will use alternate interior.

Hints on Proofs

If you are proving parts of a triangle are congruent, then the proof will probably end with

- CPCTC .

Corresponding Parts of Congruent Triangles are Congruent

If proving triangles congruent, your proof will end with:

Ways to Prove Triangles are Congruent				Rt. $\Delta \mathbf{s}$ only
SSS	SAS	ASA	AAS	HL

- The first step is to rewrite the given information, and the first reason is Given
- The last reason will be SSS, SAS, ASA, AAS, HL (or CPCTC)
- YOUR REASON WILL NEVER BE "PROVE"
- If you mark something in your picture, you need to state it in the proof
- Once you have 3 congruent statements, you can state congruent triangles

Example Proof

Given: N is the midpoint of $\underline{L W}$ N is the midpoint of SK
Prove: $\triangle L N S \cong \triangle W N K$

Statement	Reason
N is the midpoint of LW N is the midpoint of SK	1 Given
$2 \overline{L N} \cong \overline{N W}, \quad \overline{S N} \cong \overline{N K}$	2 Definition of Midpoint
$3 \quad \angle L N S \cong \angle W N K$	3 Vertical Angles are congruent
$4 \quad \Delta L N S \cong \triangle W N K$	4 SAS

1. Given: $\angle 3 \quad \angle 4, \overline{P Q}$ bisects $\angle A P B$

Pr one: $A P Q \quad B P Q$

1) $\angle 3 \cong \angle 4, \overline{P Q}$ bis. $\angle A P B$	1) Given
2) $\angle A P Q \cong \angle B P Q$	2) $\operatorname{Def} . \angle B i s$.
3) $\overline{P Q} \cong \overline{P Q}$	3) Reflex.
4) $\triangle A P Q \cong \triangle B P Q$	4) $A S A$

2.

Given: $\overline{T A}$ is parallel to $\overline{\mathrm{LD}}, \overline{\mathrm{TD}}$ is parallel to $\overline{\mathrm{LA}}$
Pr ove: $\triangle \mathrm{ATD} \cong \triangle \mathrm{DLA}$

Statements	Reasons		
1) $\overline{T A}\\|\overline{L D}, \overline{T D}\\| \overline{L A}$	1) Given		
2) $\angle 1 \cong L 2, \angle 3 \cong L 4$	2) Alt. Int.		
3) $\overline{A D} \cong \overline{A D}$	3) Reflex.		
4) $\triangle A T D \cong \triangle D L A$	4) ASA		

3.

Given: C is the midpoint of $\overline{A E} \& \overline{B D}$
Prove: $\angle A \cong \angle E$

Statements	Reasons
1) C is midst $\overline{A E}$ and $\overline{B D}$	1) Given
2) $\overline{A C} \cong \overline{C E}, \overline{B C} \cong \overline{C D}$	2) Def. midpt.
3) $\angle A C B \cong \angle E C D$	3) Vert. $\angle ' s$
4) $\triangle A C B \cong \triangle E C D$	4) SAS
5) $\angle A \cong \angle E$	5)CPCTC

4.

Given: $\overline{\mathrm{TX}} \perp \overline{A Y}, \angle 1 \cong \angle 5$
Prove: $\angle 2 \cong \angle 6$

Statements	Reasons
1) $\overline{T X} \perp \widetilde{A Y}, \angle 1 \cong L S$	1) Given
2) $\angle 3$ and $\angle 4$ rf. L 's	2) Def.perp.
3) $\angle 3 \cong \angle 4$	3) Rt. L's are \cong
4) $\overline{T X \cong ~} \overline{T X}$	4) Reflex.
5) $\triangle A T X \cong \triangle Y T X$	5)A AS
6) $\angle 2 \cong \angle 6$	6)CPCTC

Classwork:

For the following problems, mark the given information to determine if the triangles are congruent.

1. $\overline{A C} \cong \overline{D C}, \angle A \cong \angle D$

$\Delta \mathrm{CAB} \cong \Delta$ \qquad
by \qquad
2. $\overline{A C}$ bisects $\angle B C D$ and $\angle B \cong \angle D$

$\Delta \mathrm{ACB} \cong \Delta$
by \qquad
3. D is midpoint of $\overline{A C}$ $\overline{B D} \perp \overline{A C}$

$\Delta \mathrm{ABD} \cong \Delta$ \qquad
by \qquad

GIVEN:

$\angle D \cong \angle C \& \overline{D E} \cong \overline{C E}$

PROVE:

Hint: $1^{\text {st }}$ prove that triangles are congruent

