Warm Up

What is a Proof?

- A proof is a "deductive argument for a mathematical statement"
- i.e. It's an answer to the question "Why?", where you support your reasoning with definitions, theorems and other given facts.

If two triangles share a side, then you will probably use the <u>reflexive</u> property.

If you have vertical angles, you will probably use <u>vertical angles</u> in the proof.

If you are given parallel lines, then you will use <u>alternate interior</u>.

If you are proving parts of a triangle are congruent, then the proof will probably end with <u>CPCTC</u>.

Corresponding Parts of Congruent Triangles are Congruent

If proving triangles congruent, your proof will end with:

Ways to Prove Triangles are Congruent				Rt. ∆s only
SSS	SAS	ASA	AAS	HL
× × ×	X			

- The first step is to rewrite the given information, and the first reason is Given
- The last reason will be SSS, SAS, ASA, AAS, HL (or CPCTC)
 - YOUR REASON WILL NEVER BE "PROVE"
- If you mark something in your picture, you need to state it in the proof
- Once you have 3 congruent statements, you can state congruent triangles

Example Proof

Given: N is the midpoint of <u>LV</u> N is the midpoint of SK	
Prove: $\Delta LNS \cong \Delta WNK$	1t w
Statement	S Reason
¹ N is the midpoint of LW N is the midpoint of SK	1 Given
² $\overline{LN} \cong \overline{NW}, \overline{SN} \cong \overline{NK}$	2 Definition of Midpoint
$^{3} \angle LNS \cong \angle WNK$	³ Vertical Angles are congruent
4 $\Delta LNS \cong \Delta WNK$	4 SAS

^{1.} Given: $\angle 3 @ \angle 4$, \overline{PQ} bisects $\angle APB$ Pr ove: DAPQ @ DBPQ

٠

Statements	Reasons
1) 23 = 24, pa Lis. LAPB	1) Given
2) LAPQ = LBPQ	z) Def. L Bis.
3) PR = PR	3) Reflex.
4) DAPQ = DBPQ	4) ASA

Given: \overline{TA} is parallel to \overline{LD} , \overline{TD} is parallel to \overline{LA} Prove: $\triangle ATD \cong \triangle DLA$

Statements	Reasons
1) TA ILO, TO //LA	1) Given
2) 21 = 12, 23 = 24	z) Alt. Int.
3) $\overrightarrow{AD} \cong \overrightarrow{AO}$	3) Reflex.
4) DATD = DDLA	4) ASA

^{3.} Given: C is the midpoint of $\overline{AE} \& \overline{BD}$ Prove: $\angle A \cong \angle E$

Statements	Reasons
1) C is midpt AE and BD	1) Given
z) $\overline{AC} \cong \overline{CE}, \overline{BC} \cong \overline{CD}$	2) Def. mid pt.
3) $LACB \cong LECD$	3) Vert. 2's
4) DACB = DECD	4) SAS
5) LA = LE	s)cPCTC

Given: $\overline{TX} \perp \overline{AY}$, $\angle 1 \cong \angle 5$ Prove: $\angle 2 \cong \angle 6$

4.

Statements	Reasons
1) $\overline{TX} \perp \overline{AY}$, $LI \cong LS$	1) Given
2) 13 and 14 rt. 1's	z) Def. perp.
$3) \angle 3 = \angle 4$	3) Rt. L's are Ξ
YTX ~TX	4) Reflex.
S) OATX ZAYTX	5) A A.S
6) 22 = 26	6) CPCTC

Classwork:

For the following problems, mark the given information to determine if the triangles are congruent.

GIVEN: $\angle D \cong \angle C \And \overline{DE} \cong \overline{CE}$

 $\overline{AD}\cong\overline{BC}$

A = B D = C Hintria

<u>Hint:</u> 1st prove that triangles are congruent

STATEMENT	REASON