\qquad
\qquad
\qquad
Unit 3 Review
Use the figure for $1 \mathbf{1 - 3}$. $A B C D$ is a Parallelogram.

1. $\overline{A B}$ is congruent to what other segment? $\overline{C D}$
2. $\angle D$ is congruent to what other angle?

3. $\angle D$ is supplementary to what other angles?

Use parallelogram PQRS for 4-6.

4. If $m \angle P=2 x^{\circ}, m \angle R=(x+31)^{\circ}$, find the value for x.

$$
\begin{gathered}
2 x=x+31 \\
x=31
\end{gathered}
$$

5. Using your answer from problem 4, find the measure of all four angles.

$$
\begin{array}{rlrl}
m \angle P=2(31)=62 & m \angle Q & =180-62 \\
& =118 \\
m \angle R=62 & m \angle S & =118
\end{array}
$$

6. If $Q R=16$ and $P S=3 y-5$, find the value for y.

$$
\begin{aligned}
3 y-5 & =16 \\
3 y & =21 \\
y & =7
\end{aligned}
$$

Use parallelogram JKLM for 7-8.

7. What is the value of x ?

$$
\begin{aligned}
4 x+12+2 x & =180 \\
6 x+12 & =180 \\
6 x & =168 \\
x & =28
\end{aligned}
$$

8. What are the measures of all the interior angles of the parallelogram?

$$
\begin{aligned}
& m L K=2(28)=56 \quad m \angle L=4(28)+12 \\
&=124 \\
& m L M=56
\end{aligned} \quad \begin{aligned}
m J & =124
\end{aligned}
$$

Use the following information for 9-13.
In parallelogram $C D E F, A E=3 x+4$, $E C=2 x+8, B E=4 y+1$, and $B D=18$.

9. What is the value of x ?

$$
\begin{gathered}
3 x+4=2 x+8 \\
x=4
\end{gathered}
$$

10. What is the value of y ?

$$
B D=18 \rightarrow B E=9
$$

$$
\begin{array}{r}
4 y+1=9 \\
4 y=8 \\
y=2
\end{array}
$$

11. What is the length of $\overline{E C}$?

$$
E C=2(4)+8=16
$$

12. What is the length of $\overline{A C}$?

$$
A C=2(16)-32
$$

13. What is the length of $\overline{E D}$?

$$
E D=B E=9
$$

14. Three vertices of a quadrilateral are shown. What is the location of the fourth vertex so that it is a parallelogram?

For Problems 15-16, use the table below. A city block is a quadrilateral bounded by four streets with given equations.

15. Is the block a parallelogram? Explain your reasoning, yes, two pairs of equal slopes
16. Is the block a rectangle? Explain your reasoning.
yes, 3 and $-\frac{1}{3}$ are opp. recip. So the sides are per,
17. Solve for the variables in the kites:

$$
x=21, y=146
$$

$$
\begin{gathered}
x+78+40=186 \\
=17
\end{gathered}
$$

$$
\frac{418}{4+41+90=180} \begin{array}{r}
x=49 \\
y=12
\end{array}
$$

18. Solve for the variables in the isosceles trapezoid with the midsegment drawn in:

$$
\begin{aligned}
& x=\frac{10}{6} \\
& y=\frac{6}{z}
\end{aligned}
$$

$$
1460
$$

$$
x+339=360
$$

$$
\begin{gathered}
5 x-1+131=180 \\
5 x+13=180 \\
5 x=50 \\
x=10 \\
5 y-6=24 \\
5 y=30 \\
y=6
\end{gathered}
$$

$$
x=21
$$

19. A quadrilateral has vertices $A(-2,3), B(3,1), C(-2,-1)$, and $D(-3,1)$. Graph the points, identify the shape, and find the perimeter and area, rounding to the nearest tenth. All work must be shown.

Shape: LIte
Perimeter $=15.2$
Area= 17
$\frac{A D}{2^{2}+1^{2}}=x^{2}$
$A B$
$4+1=x^{2}$
$5=x^{2}$
$x=\sqrt{5}=2,2$
$P=2,2+2,2+5,4+5.4=15.2$
$\triangle A D B$

$$
\begin{aligned}
& \frac{\triangle A \cup B}{\text { Area }}=\frac{1}{2}(6)(2)=6 \\
& \text { Total Area }=6 \cdot 2=12
\end{aligned}
$$

20. Find each side length in the polygon below, then find the area and perimeter. Round all answers to the nearest tenth. All work must be shown.

$$
\begin{aligned}
& \text { Side lengths: } \\
& A B=6 \\
& \begin{array}{l}
=\frac{6}{5} \\
c \mathrm{c}=\frac{5}{3.6}
\end{array} \\
& D E=8 \\
& E F=\frac{8}{2,8} \\
& E F=\frac{2,8}{4} \\
& \begin{aligned}
E F & =\frac{2,8}{4} \\
F A & =2
\end{aligned} \\
& \begin{array}{r}
3^{2}+4^{2}=x^{2} \\
9+16=x^{2} \\
25=x^{2} \\
x=\sqrt{25}=5
\end{array} \\
& C D=\frac{\overline{3.6}}{8} \quad \\
& \begin{array}{l}
2^{2}+3^{2}=x^{2} \\
4+9=x^{2}
\end{array} \\
& \text { - } \quad 13=x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 8=x^{2} \\
& \text { Perimeter }=29.4 \\
& \text { Area }=47 \\
& \frac{\triangle B C D}{\text { Area }}=\frac{1}{2}(6)(3)=9 \quad \frac{A B D G}{\text { Area }=6.6=36} \quad \frac{\triangle E F G}{\text { Area }=\frac{1}{2}(2)(2)}=2 \\
& \text { Total Area }=9+36+2=47
\end{aligned}
$$

Slope: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Distance: $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad$ Midpoint: $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Area: Triangle $A=\frac{b h}{2}$

For Problems 21-26, use the figure below.

21. Calculate the following slopes. Note that some segments are not drawn in the figure.

$$
\text { Slope } \overline{B A}=\frac{-5}{5}=-1
$$

Slope $\overline{D A}=\frac{1}{7}$
Slope $\overline{C D}=\frac{-5}{5}=-1$
Slope $\overline{C B}=\frac{1}{7}$
Slope $\overline{D B}=\frac{6}{2}=3$
Slope $\overline{C A}=\frac{-4}{12}=-\frac{1}{3}$
22. Calculate the following slopes. Note that some segments are not drawn in the figure.

$$
\begin{aligned}
& \text { Length } \overline{B A}=\sqrt{50} \\
& 5^{2}+5^{2}=x^{2} \\
& 25+25=x^{2}
\end{aligned}
$$

$$
\text { Length } \overline{D A}=\sqrt{50}
$$

$$
\begin{aligned}
& 1^{2}+y^{2}=x^{2} \\
& 1+49=x^{2}
\end{aligned}+x^{2}=50
$$

Length $\overline{C A}=\sqrt{160}$

$$
\begin{aligned}
& 4^{2}+12^{2}=x^{2} \\
& 16+144=x^{2}
\end{aligned}
$$

Length $\overline{D B}=\sqrt{40}$

$$
\begin{aligned}
& 6^{2}+2^{2}=x^{2} \\
& 36+4=x^{2}
\end{aligned}>x^{2}=40
$$

23. Using your calculations in Problems 21 and 22, explain how you know that the figure is a parallelogram.

$$
\begin{aligned}
& \text { two pairs equal equal } \\
& \text { slopes }
\end{aligned}
$$

24. Is the figure a rectangle? Use your calculations in Problems 21 and 22 to support your answer.

$$
\begin{array}{r}
\text { no, }-1 \text { and } 7 \text { are } \\
\text { not perpislopes }
\end{array}
$$

or diag. not same length
25. Is the figure a rhombus? Use your calculations in Problems 21 and 22 to support your answer.

or 3 and 3 are prop stapes
26. Is the figure a square? Explain how you came to that conclusion.
no, not a rectangle so
cant be a square

For Problems 27-32, use the figure below.

27. Calculate the following slopes. Note that some segments are not drawn in the figure.

$$
\text { Slope } \overline{V W}=\frac{-2}{4}=\frac{-1}{2}
$$

Slope $\overline{X W}=\frac{2}{1}=2$
Slope $\overline{Y X}=\frac{-2}{4}=-\frac{1}{2}$
Slope $\overline{Y V}=\frac{2}{1}=2$
Slope $\overline{Y W}=\frac{0}{5}=0$
Slope $\overline{V X}=\frac{4}{3}$
28. Calculate the following slopes. Note that some segments are not drawn in the figure.

$$
\left.\begin{array}{l}
\text { Length } \overline{V W}=\sqrt{20} \\
\qquad \begin{array}{l}
2^{2}+4 x^{2} \\
4+16=x^{2}
\end{array} \rightarrow x^{2}=20 \\
\text { Length } \overline{Y V}=\sqrt{5} \\
2+1^{2}=x^{2} \\
4+1=x^{2} \rightarrow x^{2}: 5
\end{array}\right] .
$$

$$
\text { Length } \overline{V X}=5
$$

$$
\begin{aligned}
& 4^{2}+3^{2}=x^{2} \\
& 16+9=x^{2}
\end{aligned} \Leftrightarrow x^{2}=25
$$

29. Using your calculations in Problems 27 and 28, explain how you know that the figure is a parallelogram.
two pairs of equal
30. Is the figure a rectangle? Use your calculations in Problems 27 and 28 to support your answer.

$$
\begin{aligned}
& \text { yo, } \frac{1}{2} \text { and } 2 \text { are perpishes } \\
& \text { or ting are same ling th }
\end{aligned}
$$

31. Is the figure a rhombus? Use your calculations in Problems 27 and 28 to support your answer.
no, sites are A its. length or 0 and $-\frac{4}{3}$

$$
\begin{aligned}
& \text { pip } \\
& \text { opes }
\end{aligned}
$$

32. Is the figure a square? Explain how you came to that conclusion.
No, not tenths cant be a syndic
