\qquad
\qquad
\qquad

Unit 3 Review

Use the figure for $1-3$. $A B C D$ is a

Parallelogram.

1. $\overline{A B}$ is congruent to what other segment?
2. $\angle D$ is congruent to what other angle?
3. $\angle D$ is supplementary to what other angles?

Use parallelogram PQRS for 4-6.

4. If $\mathrm{m} \angle P=2 x^{\circ}, \mathrm{m} \angle R=(\mathrm{x}+31)^{\circ}$, find the value for x.
\qquad
5. Using your answer from problem 4, find the measure of all four angles.
\qquad
6. If $Q R=16$ and $P S=3 y-5$, find the value for y.

Use parallelogram JKLM for 7-8.

7. What is the value of x ?
8. What are the measures of all the interior angles of the parallelogram?

Use the following information for 9-13.

In parallelogram $C D E F, A E=3 x+4$, $E C=2 x+8, B E=4 y+1$, and $B D=18$.

9. What is the value of x ?
10. What is the value of y ?
11. What is the length of $\overline{E C}$?
12. What is the length of $\overline{A C}$?
13. What is the length of $\overline{E D}$?
14. Three vertices of a quadrilateral are shown. What are the coordinates of the fourth vertex so that it is a parallelogram?

For Problems 15-16, use the table below. A city block is a quadrilateral bounded by four streets with given equations.

Street	Equation
Blue St.	$y=3 x-4$
Red St.	$y=-\frac{1}{3} x+6$
Yellow St.	$3 x-y=10$
Green St.	$2 x+6 y=18$

15. Is the city block a parallelogram? Explain your reasoning.
16. Is the city block a rectangle? Explain your reasoning.
17. Solve for the variables in the kites:

18. Solve for the variables in the isosceles trapezoid with the midsegment drawn in:
$\mathrm{x}=$ \qquad
$y=$ \qquad
z = \qquad

19. A quadrilateral has vertices $A(-2,3), B(3,1), C(-2,-1)$, and $D(-3,1)$. Graph the points, identify the shape, and find the perimeter and area, rounding to the nearest tenth. All work must be shown.

Shape: \qquad
Perimeter $=$ \qquad
Area= \qquad
20. Find each side length in the polygon below, then find the area and perimeter. Round all answers to the nearest tenth. All work must be shown.

Perimeter $=$ \qquad

Area $=$ \qquad

Slope: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Distance: $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad$ Midpoint: $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ Area: Triangle $A=\frac{b h}{2} \quad$ Rectangle $A=b h$

For Problems 21-26, use the figure below.

21. Calculate the following slopes. Note that some segments are not drawn in the figure.

Slope $\overline{B A}=$

Slope $\overline{D A}=$

Slope $\overline{C D}=$

Slope $\overline{C B}=$

Slope $\overline{D B}=$

Slope $\overline{C A}=$
22. Calculate the following slopes. Note that some segments are not drawn in the figure.

Length $\overline{B A}=$

Length $\overline{D A}=$

Length $\overline{C A}=$

Length $\overline{D B}=$
23. Using your calculations in Problems 21 and 22, explain how you know that the figure is a parallelogram.
24. Is the figure a rectangle? Use your calculations in Problems 21 and 22 to support your answer.
25. Is the figure a rhombus? Use your calculations in Problems 21 and 22 to support your answer.
26. Is the figure a square? Explain how you came to that conclusion.

For Problems 27-32, use the figure below.

27. Calculate the following slopes. Note that some segments are not drawn in the figure.

Slope $\overline{V W}=$

Slope $\overline{X W}=$

Slope $\overline{Y X}=$

Slope $\overline{Y V}=$

Slope $\overline{Y W}=$

Slope $\overline{V X}=$
28. Calculate the following slopes. Note that some segments are not drawn in the figure.

Length $\overline{V W}=$

Length $\overline{Y V}=$
32. Is the figure a square? Explain how you came to that conclusion.
29. Using your calculations in Problems 27 and 28, explain how you know that the figure is a parallelogram.
30. Is the figure a rectangle? Use your calculations in Problems 27 and 28 to support your answer.
31. Is the figure a rhombus? Use your calculations in Problems 27 and 28 to support your answer.

Length $\overline{Y W}=$

