
Vectors
A matrix with only one column is called a 

column vector, or simply a vector.

The set of all vectors with 2 entries is ℝ2 (read 

R-two), since each of the two entries can be any 

real number.

Two vectors are equal if the corresponding 

entries are equal.
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Ordered pairs in the xy-plane, like vectors in 

ℝ2, are represented by two numbers.

We can identify the plotted point (3,-1) with the 

column vector          .  

Sometimes, it is useful to include a directed line 

segment (arrow) from the origin to the point, 

though we are not interested in any of the points 

on the segment.
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Adding and subtracting vectors means performing 

the operations on corresponding entries

Scalar multiplication means multiplying a vector 

by a constant (scalar)

→ We do this by multiplying each entry by the 

constant



Ex. Let

a. 3u

b. 3u – v
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If u and v in ℝ2 are represented as points in the 

xy-plane, then u + v corresponds to the fourth 

vertex of the parallelogram formed by u and v.



Def. If c is a scalar and v is a vector, then cv is the 

vector with the same direction as v that has 

length c times as long as v.  If c < 0, then cv 

goes in the opposite direction as v.



These ideas can be extended to n-dimensional 

space, ℝ𝑛.

The zero vector, 0, is the vector whose entries 

are all zero.
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A linear combination of vectors involves 

multiplying each vector by a constant coefficient 

and adding the results.

y = c1v1 + c2v2 + … + cnvn

is a linear combination of v1, v2, …, vn

→ The vector                 is a linear combination of   

                  and                  because u = 3v1 + 2v2.

The coefficients are called the weights of the 

combination
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Ex. Determine if b can be written as a linear 

combination of a1 and a2.

1 2

1 2 7

2 , 5 , 4

5 6 3

     
     = − = =
     
− −          

a a b



Notice that the columns of our augmented matrix 

were a1, a2, and b.

→We can abbreviate by writing [a1   a2   b]

In general:

A vector equation x1a1 + x2a2 + … + xnan = b has 

the same solution set as the linear system whose 

augmented matrix is [a1   a2   …    an   b]



Ex. Convert                                    to a vector equation.
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Def. If v1, …, vp are vectors in ℝ𝑛, then the set of 

all linear combinations of v1, …, vp is denoted 

Span{v1, …, vp} and is called the subset of ℝ𝑛 

spanned by v1, …, vp.

That is, Span{v1, …, vp} is the set of all vectors 

that can be written c1v1 + … + cpvp, where 

c1,…,cp are scalars.



In ℝ3:

Span{v} is the line through the origin and v:

Span{u,v} is the plane through the origin, u and v:



Ex. Determine if b is in the plane generated by 

Span{a1,a2}.
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The Matrix Equation
Let A be the matrix [a1   a2   …   an], where each 

of the a’s is a vector in ℝ𝑚, and let x be a vector 

in ℝ𝑛.  Then the product Ax is the linear 

combination of the columns of A using the 

entries of x as weights:
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Linear system:

Vector equation:

Matrix Equation:
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Linear systems can be expressed in 3 different 

ways, we can pick the one that’s most 

convenient.



Ex. Is the equation Ax = b consistent for all 

possible b1, b2, and b3?
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Thm. Let A be an 𝑚 × 𝑛 matrix and b be a vector in ℝ𝑚.  

The following are equivalent (all are true or none are 

true):

i. The equation Ax = b has a solution for any b in ℝ𝑚.

ii. Every b in ℝ𝑚 is a linear combination of the columns 

of A

iii. The columns of A span ℝ𝑚 (every vector in ℝ𝑚 is in 

the span of the columns of A)

iv.  A has a pivot position in every row

Note:  This is about the coefficient matrix, A, of a linear 

system, not the augmented matrix [A   b].



Ex. Can Ax = b be solved for any b in ℝ3?
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Ex. Do the columns of A span ℝ3?
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Let’s do these again using dot product:



The identity matrix is a square matrix that has 
ones on its main diagonal and zeroes as every 

other entry

Multiplying any vector by I results in the same 

vector
Ix = x 
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Solution Sets of Linear Systems
The linear system Ax = 0 is called homogeneous.  

x1a1 + x2a2 + … + xnan = 0

This system always has at least 1 solution, where 

all the x’s are 0.  This is called the trivial solution.

Thm. The homogeneous equation Ax = 0 has a 

nontrivial solution if and only if the equation has 

at least one free variable.

→ So the homogeneous system has either one 

trivial solution or infinitely many solutions.



Ex. Describe the solution set of 1 2 3
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1 free variable resulted in a line in ℝ3.



Ex. Describe the solution set of
1 2 310 3 2 0x x x− − =

2 free variables resulted in a plane in ℝ3.



If A has no free variables:

• Trivial solution

• The point 0 in ℝ3

If A has 1 free variable:

• A line in ℝ3 that passes through the origin

• Can be described parametrically by x = tv1.

If A has 2 free variables:

• A plane in ℝ3 that passes through the origin

• Can be described parametrically by x = sv1 + tv2.

→ Note this represents Span{v1, v2}

When we write our solution sets in this form, it is called the 

parametric vector form.



If b ≠ 0, the linear system Ax = b is called       

non-homogeneous.  

x1a1 + x2a2 + … + xnan = b



Ex. Describe the solution set of 1 2 3
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Ax = b has no solutions if:

• Ax = b is inconsistent

Ax = b has 1 solution if:

• The corresponding homogeneous system had only the 

trivial solution

Ax = b has infinitely many solutions if:

• The corresponding homogeneous system had infinitely 

many solutions

• Solutions would be 1 vector plus a linear combination 

of vectors that satisfy the corresponding homogeneous 

system.

• x = p + tv1 → a line not through the origin

• x = p + sv1 + tv2 → a plane not through the origin



Prove the previous result:
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