
A set of vectors v1, v2, … , vp is linearly 

dependent if there exist constants x1, x2, … , xp 

(not all zero) such that

x1v1 + x2v2 + … + xpvp = 0

→This equation is called a linear dependence 

relation.

→The set is linearly independent if                    

x1 = x2 = … = xp = 0 is the only solution.

Linear Independence



Ex. Determine if the vectors are dependent.  Find 

a linear dependence relation.

1 2 3

1 4 2

2 , 5 , 1

3 6 0

     
     = = =
     
          

v v v



x1v1 + x2v2 + … + xpvp = 0

→Note this is the same as our homogeneous 

equation Ax = 0, where the vectors are the 

columns of A.

Thm. The following are equivalent:

i.  Ax = 0 has only the trivial solution

ii. The columns of A are linearly independent

iii. The linear system with augmented matrix     

[A   0] has no free variables

iv.  A has a pivot in each column



Ex. Determine if the vectors are dependent.

1 2 3

0 1 4

1 , 2 , 1

5 8 0

     
     = = = −
     
          

v v v



Thm. A set of two or more vectors is linearly 

dependent if and only if at least one is a linear 

combination of the others.

Ex. Assume a vector w is in Span{u,v}.  

Describe w and show that u, v, and w are 

linearly dependent.



Ex. Determine if the vectors are dependent.

a.

b. 
1 2

3 6
,

2 2

   
= =   
   

v v

1 2

3 6
,

1 2

   
= =   
   

v v



Two vectors are linearly dependent if one is a 

multiple of the other.

Note:  This doesn’t 

work for more than 2 

vectors!



Thm. If a set contains more vectors than there are 

entries in each vector, then the set is dependent.

Ex. Show that the set is dependent. 2 4 2
, ,

1 1 2

 −     
      −      



Thm. If a set contains the zero vector, then the set 

is dependent.



Ex. Determine if the set is dependent.

a. 

b. 

1 2 3 4

7 , 0 , 1 , 1

6 9 5 8

        
        
        
                

1 0 3

7 , 0 , 1

6 0 5

      
      
      
            

1 3

2 6
,

3 9

5 15

 −   
    −     

−    
    −    

c. 



Intro to Linear Transformations

Def. A function  f  from set A to set B is a relation 

that assigns to each element x in set A exactly 

one element y in set B.

Set A

Domain

Set B

Codomain



1

4 3 1 3 1 5

2 0 5 1 1 8

1

 
 −   
  =   
    
 
 

A =x b

We can think of A as transforming x in ℝ4 

to b in ℝ2.



A transformation (or function or mapping) T 

from ℝ𝑛 to ℝ𝑚 is a rule that assigns each vector 

x in ℝ𝑛 a vector T(x) in ℝ𝑚.

T : ℝ𝑛 → ℝ𝑚

ℝ𝑛 is the domain

ℝ𝑚 is the codomain

The set of all T(x) is called the range

→The range is a subset of the codomain

The rest of this section will focus on mappings 

associated with matrix multiplication

𝐱 ↦ 𝐴𝐱



Ex. Define a transformation T : ℝ2 → ℝ3 by 

T(x) = Ax.

a. If u = 
2

−1
, find T(u).

1 3

3 5

1 7

A

− 
 =
 
−  



Ex. Define a transformation T : ℝ2 → ℝ3 by      

T(x) = Ax.

b. If b = 
3
2

−5
, find an x whose image under T is b.

1 3

3 5

1 7

A

− 
 =
 
−  Was this answer unique?



Ex. Define a transformation T : ℝ2 → ℝ3 by      

T(x) = Ax.

c. If c = 
3
2
5

, find an x whose image under T is c.

1 3

3 5

1 7

A

− 
 =
 
−  



Ex. Define a transformation T : ℝ2 → ℝ3 by      

T(x) = Ax.

d. Find all x that are mapped into the zero vector.

1 3

3 5

1 7

A

− 
 =
 
−  



Ex. Find the image of x under the transformation 

𝐱 ↦ 𝐴𝐱. 1 0 0 3

0 1 0 , 8

0 0 0 4

A

   
   = =
   
      

x

This projects the point onto the x1x2-plane.



A mapping T : ℝ𝑛 → ℝ𝑚 is onto ℝ𝑚 if every b in 

ℝ𝑚 is the image of at least one x in ℝ𝑛.

→The range makes up the entire codomain

→Every vector in ℝ𝑚 is the output at least once



A mapping T : ℝ𝑛 → ℝ𝑚 is one-to-one if every b 

in ℝ𝑚 is the image of at most one x in ℝ𝑛.

→Every vector in the range is an output exactly 

once

→Not all vectors in ℝ𝑚 are outputs

→T(x) has either a unique solution or no solution



Ex. Define T : ℝ4 → ℝ3 by T(x) = Ax.  Does T 

map ℝ4 onto ℝ3?  Is T one-to-one?
1 4 8 1

0 2 1 3

0 0 0 5

A

− 
 = −
 
  



We remember properties of vector/matrix/scalar 

addition and multiplication:

Distributive:  A(u + v) = A(u) + A(v)

Commutative:  A(cu) = cA(u)

These lead to the properties of a linear 

transformation T.

T(u + v) = T(u) + T(v)

T(cu) = cT(u)



For any linear transformation,

T(cu + dv) = cT(u) + dT(v)

In particular, T(0) = 0.

→ This can be generalized to be true for any 

number of vectors.  This is called the 

superposition principle.



Ex. Define T : ℝ2 → ℝ2 by T(x) = 3x.  Show that 

T is a linear transformation.

What does this transformation represent graphically?



Ex. Define T : ℝ2 → ℝ2 by T(x) = 
0 −1
1 0

x.  

Find T(u):

a) 

b) 

What does this transformation represent graphically?

4

1

 
=  
 

u

2

3

 
=  
 

u



Matrix of a Linear Transformation

We have been talking about different linear 

transformations, not just ones that are matrix 

multiplication.

In fact, all linear transformations can be 

represented by a matrix multiplication.



To find the matrix, we will be using the 

columns of In, which we will call e1, e2, etc.

These are called the standard basis vectors 

of ℝ3.

3 1 2 3

1 0 0 1 0 0

0 1 0 , 0 , 1 , 0

0 0 1 0 0 1

I

       
       = = = =
       
              

e e e



Ex. Suppose T is a linear transformation such that 

𝑇 𝐞1 =
5

−7
2

 and 𝑇 𝐞2 =
−3
8
0

.  Describe the 

image of an arbitrary 𝐱 =
𝑥1

𝑥2
.



Thm. If T:ℝ𝑛 → ℝ𝑚 is a linear transformation, there 

is a unique 𝑚 × 𝑛 matrix A such that T(x) = Ax for 

all x.  

→The columns of A will be the transformation of 

the columns of I.  In other words:

A = [T(e1)   …   T(en)]

→This is called the standard matrix for the linear 

transformation.

→Please note mapping ℝ𝑛 → ℝ𝑚 requires a matrix 

that is 𝑚 × 𝑛.



Ex. Find the standard matrix for the transformation 

that rotates each point in ℝ2 counterclockwise 

about the origin through an angle 𝜑.



p. 73-75 has the standard matrices for several 

common geometric linear transformations.

→ Even more transformations come from the 

composition of transformations.



Ex. Define T : ℝ4 → ℝ3 by T(x) = Ax.  Does T 

map ℝ4 onto ℝ3?  Is T one-to-one?
1 4 8 1

0 2 1 3

0 0 0 5

A

− 
 = −
 
  



Thm. Consider the linear transformation T : ℝ𝑛 → ℝ𝑚 
with standard matrix A.  The following are equivalent:

i.  T is one-to-one.

ii.  A has a pivot in each column.

iii.  A has no free variables.

iv. The columns of A are linearly independent.

v. The equation T(x) = 0 has only the trivial solution. 

→ This links us with all of the equivalent  statements from 

last class.



Thm. Consider the linear transformation T : ℝ𝑛 → ℝ𝑚 
with standard matrix A.  The following are equivalent:

i.  T maps ℝ𝑛 onto ℝ𝑚.

ii.  A has a pivot in each row.

iii. The columns of A span ℝ𝑚. 

iv. The equation Ax = b has a solution for any b in ℝ𝑚.

v. Every b in ℝ𝑚 is a linear combination of the columns 

of A



Ex. Let T(x1,x2) = (3x1 + x2, 5x1 + 7x2, x1 + 3x2).  

Does T map ℝ2 onto ℝ3?  Is T one-to-one?
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