Linear Independence

Aset of vectors vy, v,, ..., v, Is linearly
dependent if there exist constants Xy, X,, ... , X
(not all zero) such that

p
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-> This equation is called a linear dependence
relation.

’

—> The set Is linearly independent if
X; = X, = ... = X, = 0 1s the only solution.




Ex. Determine if the vectors are dependent. Find
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XV + XV o XV, =0

-> Note this Is the same as our homogeneous
equation Ax = 0, where the vectors are the
columns of A.

Thm. The following are equivalent:
I.  Ax =0 has only the trivial solution
1. The columns of A are linearly independent

l1l. The linear system with augmented matrix
[A | 0] has no free variables

IV. A has apivot in each column



Ex. Determine If the vectors are depen_de_nt.

V, =

y Vo =

, Vg =




Thm. A set of two or more vectors Is linearly
dependent if and only if at least one is a linear
combination of the others.
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Ex. Determine if the vectors are dependent. |
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Two vectors are linearly dependent if one is a
multiple of the other.

X,

(6,2)

(3. 1)

Linearly dependent

/ Note: This doesn’t
work for more than 2

vectors!

Linearly independent



Thm. If a set contains more vectors than there are
entries In each vector, then the set is dependent.

EX. Show that the set Is dependent. {2‘ {4} {_2}}
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Thm. If a set contains the zero vector, then the set
IS dependent.
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EX. Determine If the set Is dependent.
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Intro to Linear Transformations

Def. A function f from set A to set B Is a relation
that assigns to each element x in set A exactly
one element y in set B.

=7 ¢

0 N (9) mn 1 .

A4 ‘/D B N 42 s
£ - s
'\_D \]5/' 6 : 8
1/5\. -~ |/] %\I 14
A N b 7 I
(6) @ L
Set A SetB

T 1

Domain Codomain



4 -3 1 3
2 0 51

A

I
I|_\ = = =
|l
1
oo Ol
—

Ax:lqR” .
4/( "

We can think of A as transforming x in R*

to b in R?. .
~ coa/omam



A transformation (or function or mapping) T
from R™ to R™ is a rule that assigns each vector
X In R™ a vector T(x) in R™.

7: R®" - R™
R™ Is the domain

/F(x)‘ [ X

R™ Is the codomalin
The set of all T(x) Is called the range
-> The range Is a subset of the codomain

The rest of this section will focus on mappings
assoclated with matrix multiplication T (;2\ - A¥

X — AX



Ex. Define a transformation 7: R? —» R3 by
T(x) = AX.
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Ex. Define a transformation 7': R?

T(x) = AX.
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-2
14
4
K= 3/& _;_—_>
ﬁz:ﬁyL )

=[]

ﬂﬁ‘:’i@l | -3 |3 @'3
7:]::) 0 '/"/ — @}’
2Rk 0 U)h Rymirs) 0 0

)

g

]

—
—F(x)= /x

7x=1§
228




Ex. Define a transformation 7: R? —» R3 by

T(x) = AX.
-
c. Ifc =121, find an x whose image under T Is C.
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Ex. Define a transformation 7: R? —» R3 by
T(x) = AX.

d. Find all x that are mapped
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EX. Find the image of x under the transformati_on_
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A mapping 7: R"™ - R™ is onto R™ if every b in
R™ is the image of at least one x in R™.
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A mapping 7: R"™ - R™ is one-to-one if every b
In R™ Is the image of at most one x in R™.
-> Every vector In the range Is an output exactly

once

-> Not all vectors in R™ are outputs
—> T(X) has either a unique solution or no solution
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Ex. Define 7: R* - R3 by T(x) = Ax. Does TJ,
map R* onto R3? Is T one-to-one?
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We remember properties of vector/matrix/scalar
addition and multiplication:

Distributive: A(u + V) = A(u) + A(V) T _{: —

Tu+W=T T b9’
(U+v)=T(u) + T(v) %(Fm);fa‘j

Commutative: A(cu) = cA . ’
utative: A(cu) = CA(u) oA (c4) e
T(cu) =cT(u)

These lead to the properties of a linear
transformation T.



For any linear transformation,
T(cu +dv) =cT(u) + dT(v)

In particular, T(0) = 0.

—> This can be generalized to be true for any
number of vectors. This Is called the

superposition principle.



Ex. Define 7: R? - R? by T(x) = 3x. Show that
T 1s a linear transformation.
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What does this transformation represent graphically?



Ex. Define T: R? - R by T(x) =

Find T(u):
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Matrix of a Linear Transformation

We have been talking about different linear

transformations, not just ones that are matrix
multiplication.

In fact, all linear transformations can be
represented by a matrix multiplication.



To find the matrix, we will be using the T D f]
columns of |, which we will call e,, e,, etc.
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The33e are called the standard basis vectors
of Ry.



EX. Suppose T IS a linear transformation such that
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Thm. If T:R"™ - R™ is a linear transformation, there

IS @ unique m X n matrix A such that T(x) = Ax for
all x.

- The columns of A will be the transformation of
the columns of I. In other words:

A=[T(e) ... T(ey)]
- This 1s called the standard matrix for the linear
transformation.

—> Please note mapping R™ — R™ requires a matrix
that Ism X n.



EX. Find the standard matrix for the transformation
that rotates each point in R? counterclockwise
about the origin through an angle ¢. ["‘ "']
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p. 73-75 has the standard matrices for several
common geometric linear transformations.

- Even more transformations come from the
composition of transformations.



onte

map R* onto R3? Is T one-to-one?
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Thm. Consider the linear transformation 7: R™* — R™
with standard matrix A. The following are equivalent:

I. T Isone-to-one.

Il. A hasa pivot in each column.

lil. A has no free variables.

Iv. The columns of A are linearly independent.

v. The equation T(x) = 0 has only the trivial solution.

—> This links us with all of the equivalent statements from
last class.



Thm. Consider the linear transformation 7: R™* — R™
with standard matrix A. The following are equivalent:

I. T maps R"™ onto R™.

Il. A hasa pivot in each row.

lii. The columns of A span R™.

Iv. The equation Ax = b has a solution for any b in R™.

v. Every b in R™ is a linear combination of the columns
of A



EX. Let T(Xy,X,) = (3Xy + X5, 9X1 + Xy, Xy + 3X,).
Does T map R? onto R3? Is T one-to-one?
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