Vectors

A matrix with only one column is called a column vector, or simply a vector.

$$\mathbf{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

The set of all vectors with 2 entries is \mathbb{R}^2 (read R-two), since each of the two entries can be any real number.

Two vectors are equal if the corresponding entries are equal.

When graphing a vector in \mathbb{R}^2 , it's helpful to think of it as a directed line segment (arrow) starting at the origin.

• The first entry is the horizontal motion, the second entry is vertical motion.

Even though we draw the entire arrow, our interest is only in the terminal point.

FIGURE 2 Vectors with arrows.

Adding and subtracting vectors means performing the operations on corresponding entries

Scalar multiplication means multiplying a vector by a constant (scalar)

→ We do this by multiplying each entry by the constant

Ex. Let
$$\mathbf{u} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$

a. 3**u**

b.
$$3\mathbf{u} - \mathbf{v}$$

If **u** and **v** in \mathbb{R}^2 are vectors in the x_1x_2 -plane, then **u** + **v** is the vector from the origin to the opposite vertex of the parallelogram formed by

u and **v**.

<u>Def.</u> If c is a scalar and \mathbf{v} is a vector, then $c\mathbf{v}$ is the vector with the same direction as \mathbf{v} that has length c times as long as \mathbf{v} . If c < 0, then $c\mathbf{v}$ goes in the opposite direction as \mathbf{v} .

These ideas can be extended to *n*-dimensional space, \mathbb{R}^n .

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

The zero vector, **0**, is the vector whose entries are all zero.

Algebraic Properties of \mathbb{R}^n

For all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^n and all scalars c and d:

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

(v)
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

(ii)
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 (vi) $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$

(vi)
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

(iii)
$$u + 0 = 0 + u = u$$

(vii)
$$c(d\mathbf{u}) = (cd)(\mathbf{u})$$

(iv)
$$\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$$
,
where $-\mathbf{u}$ denotes $(-1)\mathbf{u}$

(viii)
$$1\mathbf{u} = \mathbf{u}$$

A <u>linear combination</u> of vectors involves multiplying each vector by a constant coefficient and adding the results.

$$\mathbf{y} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

is a linear combination of $v_1, v_2, ..., v_n$

Ex. Consider the vectors
$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$. Find the vector \mathbf{u} that results from the linear combination $\mathbf{u} = 3\mathbf{v}_1 + 2\mathbf{v}_2$.

- We say that **u** is a linear combination of \mathbf{v}_1 and \mathbf{v}_2
- The coefficients are called the <u>weights</u> of the combination

Ex. Determine if **b** can be written as a linear

combination of
$$\mathbf{a}_1$$
 and \mathbf{a}_2 .

combination of
$$\mathbf{a}_1$$
 and \mathbf{a}_2 .
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$$

Notice that the columns of our augmented matrix were \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{b} .

 \rightarrow We can abbreviate by writing $[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{b}]$ In general:

A <u>vector equation</u> $x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n = \mathbf{b}$ has the same solution set as the linear system whose augmented matrix is $[\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n \ \mathbf{b}]$

<u>Def.</u> If $\mathbf{v}_1, ..., \mathbf{v}_p$ are vectors in \mathbb{R}^n , then the set of all linear combinations of $\mathbf{v}_1, ..., \mathbf{v}_p$ is denoted Span $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ and is called the <u>subset of \mathbb{R}^n spanned by $\mathbf{v}_1, ..., \mathbf{v}_p$.</u>

That is, $\operatorname{Span}\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ is the set of all vectors that can be written $c_1\mathbf{v}_1 + ... + c_p\mathbf{v}_p$, where $c_1,...,c_p$ are scalars.

In \mathbb{R}^3 :

Span{v} is the line through the origin and v:

Span $\{u,v\}$ is the plane through the origin, u and v:

Ex. Determine if **b** is in the plane generated by

Span $\{\mathbf{a}_1, \mathbf{a}_2\}$.

$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} 5 \\ -13 \\ -3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -3 \\ 8 \\ 1 \end{bmatrix}$$

The Matrix Equation

Let A be the matrix $[\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]$, where each of the \mathbf{a} 's is a vector in \mathbb{R}^m , and let \mathbf{x} be a vector in \mathbb{R}^n . Then the product $A\mathbf{x}$ is the linear combination of the columns of A using the entries of \mathbf{x} as weights:

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n$$

$$\underline{\text{Ex.}} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{bmatrix} \begin{vmatrix} 4 \\ 3 \\ 7 \end{vmatrix}$$

$$\underline{\text{Ex.}} \begin{bmatrix} 2 & -3 \\ 8 & 0 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$

$$\underline{\text{Ex.}} \begin{bmatrix} 2 & -3 \\ 8 & 0 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \\ 1 \end{bmatrix}$$

Linear system:
$$x_1 + 2x_2 - x_3 = 4$$
$$-5x_2 + 3x_3 = 1$$

Vector equation:
$$x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ -5 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Matrix Equation:
$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Each of these represents the same question because each of them will be solved using the same augmented matrix. Ex. Is the equation Ax = b consistent for all

possible
$$b_1$$
, b_2 , and b_3 ?
$$A = \begin{bmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Thm. Let A be an $m \times n$ matrix and \mathbf{b} be a vector in \mathbb{R}^m . The following are equivalent (all are true or none are true):

- i. The equation $A\mathbf{x} = \mathbf{b}$ has a solution for any \mathbf{b} in \mathbb{R}^m .
- ii. Every **b** in \mathbb{R}^m is a linear combination of the columns of A
- iii. The columns of A span \mathbb{R}^m (every vector in \mathbb{R}^m is in the span of the columns of A)
- iv. A has a pivot position in every row

Note: This is about the coefficient matrix, A, of a linear system, not the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$.

Ex. Can $A\mathbf{x} = \mathbf{b}$ be solved for any \mathbf{b} in \mathbb{R}^3 ?

$$A = \begin{bmatrix} 1 & 0 & -1 & 6 \\ 7 & 1 & -1 & 14 \\ 5 & 1 & 1 & 2 \end{bmatrix}$$

Ex. Do the columns of A span \mathbb{R}^3 ?

$$A = \begin{bmatrix} 7 & 1 & 2 \\ 5 & -1 & 6 \\ -2 & 0 & 4 \end{bmatrix}$$

The <u>identity matrix</u> is a square matrix that has ones on its main diagonal and zeroes as every other entry $\begin{bmatrix}
1 & 0 & 0 & 0
\end{bmatrix}$

$$I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Multiplying any vector by *I* results in the same vector

$$I_{\mathbf{X}} = \mathbf{x}$$

Solution Sets of Linear Systems

The linear system $A\mathbf{x} = \mathbf{0}$ is called <u>homogeneous</u>.

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \ldots + x_n\mathbf{a}_n = \mathbf{0}$$

This system always has at least 1 solution, where all the x's are 0. This is called the trivial solution.

Thm. The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution if and only if the equation has at least one free variable.

→ So the homogeneous system has either one trivial solution or infinitely many solutions.

Ex. Describe the solution set of
$$3x_1 + 5x_2 - 4x_3 = 0$$

 $-3x_1 - 2x_2 + 4x_3 = 0$
 $6x_1 + x_2 - 8x_3 = 0$

1 free variable resulted in a line in \mathbb{R}^3 .

Ex. Describe the solution set of $10x_1 - 3x_2 - 2x_3 = 0$

2 free variables resulted in a plane in \mathbb{R}^3 .

If A has no free variables:

- Trivial solution
- The point $\mathbf{0}$ in \mathbb{R}^3

If A has 1 free variable:

- A line in \mathbb{R}^3 that passes through the origin
- Can be described parametrically by $\mathbf{x} = t\mathbf{v}_1$.

If A has 2 free variables:

- A plane in \mathbb{R}^3 that passes through the origin
- Can be described parametrically by $\mathbf{x} = s\mathbf{v}_1 + t\mathbf{v}_2$.
- \rightarrow Note this represents Span $\{\mathbf{v}_1, \mathbf{v}_2\}$

When we write our solution sets in this form, it is called the parametric vector form.

If $\mathbf{b} \neq \mathbf{0}$, the linear system $A\mathbf{x} = \mathbf{b}$ is called non-homogeneous.

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \ldots + x_n\mathbf{a}_n = \mathbf{b}$$

Ex. Describe the solution set of $3x_1 + 5x_2 - 4x_3 = 7$ $-3x_1 - 2x_2 + 4x_3 = -1$ $6x_1 + x_2 - 8x_3 = -4$

$A\mathbf{x} = \mathbf{b}$ has no solutions if:

• $A\mathbf{x} = \mathbf{b}$ is inconsistent

$A\mathbf{x} = \mathbf{b}$ has 1 solution if:

 The corresponding homogeneous system had only the trivial solution

$A\mathbf{x} = \mathbf{b}$ has infinitely many solutions if:

- The corresponding homogeneous system had infinitely many solutions
- Solutions would be 1 vector plus a linear combination of vectors that satisfy the corresponding homogeneous system.
- $\mathbf{x} = \mathbf{p} + t\mathbf{v}_1 \rightarrow$ a line not through the origin
- $\mathbf{x} = \mathbf{p} + s\mathbf{v}_1 + t\mathbf{v}_2 \rightarrow$ a plane not through the origin

Prove the previous result: