Vectors

A matrix with only one column is called a column vector, or simply a vector.

$$
\mathbf{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}
$$

The set of all vectors with 2 entries is \mathbb{R}^2 (read R-two), since each of the two entries can be any real number.

Two vectors are equal if the corresponding entries are equal.

When graphing a vector in \mathbb{R}^2 , it's helpful to think of it as a directed line segment (arrow) starting at the origin.

• The first entry is the horizontal motion, the second entry is vertical motion.

Even though we draw the entire arrow, our interest is only in the terminal point.

FIGURE 2 Vectors with arrows.

Adding and subtracting vectors means performing the operations on corresponding entries Adding and subtracting vectors means performing
the operations on corresponding entries
Scalar multiplication means multiplying a vector
by a constant (scalar)
 \rightarrow We do this by multiplying ageb entry by the

by a constant (scalar)

 \rightarrow We do this by multiplying each entry by the constant

Ex. Let
$$
\mathbf{u} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}
$$
 and $\mathbf{v} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$

a. 3u

b. $3u - v$

If **u** and **v** in \mathbb{R}^2 are vectors in the x_1x_2 -plane, then $\mathbf{u} + \mathbf{v}$ is the vector from the origin to the opposite vertex of the parallelogram formed by **u** and **v**.

Def. If c is a scalar and **v** is a vector, then c**v** is the vector with the same direction as **v** that has length c times as long as **v**. If $c < 0$, then c**v** vector with the same direction as v that has length c times as long as v. If $c < 0$, then cv goes in the opposite direction as v.

These ideas can be extended to n -dimensional space, \mathbb{R}^n . $\begin{bmatrix} u_1 \end{bmatrix}$

$$
\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}
$$

The zero vector, $\mathbf{0}$, is the vector whose entries are all zero.

A linear combination of vectors involves
multiplying each vector by a constant coefficient
and adding the results. multiplying each vector by a constant coefficient and adding the results.

 $y = c_1v_1 + c_2v_2 + ... + c_nv_n$ \mathbf{v}_n is a linear combination of $v_1, v_2, ..., v_n$

<u>Ex.</u> Consider the vectors $\mathbf{v}_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$.
Find the vector **u** that results from the linear Find the vector u that results from the linear combination $\mathbf{u} = 3\mathbf{v}_1 + 2\mathbf{v}_2$. . 1 2 3 $\lceil 2 \rceil$ $\mathbf{v}_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$ and \mathbf{v}_2 $\overline{4}$ 1 $\lceil 4 \rceil$ $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

- We say that **u** is a linear combination of v_1 and v_2
- We say that **u** is a linear combination of **v**₁ and **v**₂
• The coefficients are called the <u>weights</u> of the combination combination

Ex. Determine if **b** can be written as a linear
combination of \mathbf{a}_1 and \mathbf{a}_2 .
 $\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ combination of \mathbf{a}_1 and \mathbf{a}_2 . $\begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} 2 \end{bmatrix}$ $\begin{bmatrix} 7 \end{bmatrix}$

$$
\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}
$$

Notice that the columns of our augmented matrix were \mathbf{a}_1 , \mathbf{a}_2 , and **b**.

 \rightarrow We can abbreviate by writing $[a_1 \ a_2 \ b]$ In general:

A <u>vector equation</u> $x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \ldots + x_n \mathbf{a}_n = \mathbf{b}$ has the same solution set as the linear system whose augmented matrix is $[\mathbf{a}_1 \quad \mathbf{a}_2 \quad \dots \quad \mathbf{a}_n \quad \mathbf{b}]$

Def. If \mathbf{v}_1 , ..., \mathbf{v}_p are vectors in \mathbb{R}^n , then all linear combinations of \mathbf{v}_1 , ..., \mathbf{v}_p
Span $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and is called the sum , ..., \mathbf{v}_p are vectors in \mathbb{R}^n , then the set of all linear combinations of $v_1, ..., v_p$ is denoted Span $\{v_1, ..., v_p\}$ and is called the subset of \mathbb{R}^n spanned by $\mathbf{v}_1, ..., \mathbf{v}_p$. .

That is, Span $\{v_1, ..., v_p\}$ is the set of all vectors that can be written $c_1\mathbf{v}_1 + \ldots + c_p\mathbf{v}_p$, where $c_1, ..., c_p$ are scalars.

In \mathbb{R}^3 :

Span $\{v\}$ is the line through the origin and v:

Span $\{u, v\}$ is the plane through the origin, u and v:

The Matrix Equation

Let A be the matrix $[\mathbf{a}_1 \quad \mathbf{a}_2 \quad \dots \quad \mathbf{a}_n]$, where each of the **a**'s is a vector in \mathbb{R}^m , and let x be a vector in \mathbb{R}^n . Then the product Ax is the linear combination of the columns of A using the entries of x as weights:

$$
A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n
$$

Linear system:
$$
x_1 + 2x_2 - x_3 = 4
$$

$$
-5x_2 + 3x_3 = 1
$$

Vector equation:
$$
x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ -5 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}
$$

Matrix Equation:
$$
\begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}
$$

Each of these represents the same question because each of them will be solved using the same augmented matrix.

Ex. Is the equation
$$
A\mathbf{x} = \mathbf{b}
$$
 consistent for all possible b_1, b_2 , and b_3 ?
\n
$$
A = \begin{bmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}
$$

Thm. Let *A* be an $m \times n$ matrix and **b** be a vector in \mathbb{R}^m .
The following are equivalent (all are true or none are true): true): **Thm.** Let *A* be an $m \times n$ matrix and **b** be a vector in \mathbb{R}^m .
The following are equivalent (all are true or none are
true):
i. The equation $A\mathbf{x} = \mathbf{b}$ has a solution for any \mathbf{b} in \mathbb{R}^m .
ii. Every Thm. Let *A* be an $m \times n$ matrix and **b** be a vector in \mathbb{R}^m .
The following are equivalent (all are true or none are
true):
i. The equation $A\mathbf{x} = \mathbf{b}$ has a solution for any **b** in \mathbb{R}^m .
ii. Every **b** in

-
- of A
- the span of the columns of A)
- iv. A has a pivot position in every row

Note: This is about the coefficient matrix, A, of a linear system, not the augmented matrix $[A \mid b]$.

Ex. Can A **x** = **b** be solved for any **b** in \mathbb{R}^3 ?
 $\begin{bmatrix} 1 & 0 & -1 & 6 \\ 7 & 1 & 1 & 14 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 6 \end{bmatrix}$ $7 \quad 1 \quad -1 \quad 14$ $5 \quad 1 \quad 1 \quad 2$ \overline{A} $\begin{bmatrix} 1 & 0 & -1 & 6 \end{bmatrix}$ $=\begin{vmatrix} 7 & 1 & -1 & 14 \end{vmatrix}$ $\begin{bmatrix} 5 & 1 & 1 & 2 \end{bmatrix}$

Ex. Do the columns of *A* span
$$
\mathbb{R}^3
$$
?

$$
A = \begin{bmatrix} 7 & 1 & 2 \\ 5 & -1 & 6 \\ -2 & 0 & 4 \end{bmatrix}
$$

The <u>identity matrix</u> is a square matrix that has
ones on its main diagonal and zeroes as every
other entry $\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$ ones on its main diagonal and zeroes as every other entry $1 \quad 0 \quad 0 \quad 0$ $\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

$$
I_4 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

Multiplying any vector by I results in the same vector

$$
I\mathbf{x}=\mathbf{x}
$$

Solution Sets of Linear Systems The linear system $A\mathbf{x} = \mathbf{0}$ is called <u>homogeneous</u>. **Solution Sets of Linear Systems**
The linear system $A\mathbf{x} = \mathbf{0}$ is called <u>homogeneous</u>.
 $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + ... + x_n\mathbf{a}_n = \mathbf{0}$
This system always has at least 1 solution, where
all the x's are 0. This is called t

 x_1 **a**₁ + x_2 **a**₂ + ... + x_n **a**_n = **0**

This system always has at least 1 solution, where

Solution Sets of Linear Systems
The linear system $A\mathbf{x} = \mathbf{0}$ is called <u>homogeneous</u>.
 $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + ... + x_n\mathbf{a}_n = \mathbf{0}$
This system always has at least 1 solution, where
all the x's are 0. This is called t nontrivial solution if and only if the equation has at least one free variable. The inset system in \bullet is called <u>integeneous</u>.
 $x_1a_1 + x_2a_2 + ... + x_na_n = 0$

This system always has at least 1 solution, where

all the x's are 0. This is called the <u>trivial</u> solution.

<u>Thm.</u> The homogeneous equation A

trivial solution or infinitely many solutions.

Ex. Describe the solution set of $3x_1 + 5x_2 - 4x_3 = -3x_1 - 2x_2 + 4x_3 = 6x_1 + x_2 - 8x_3$ $-3x_1 - 2x_2 + 4x_3 = 0$ $6x_1 + x_2 - 8x_3 = 0$ $3x_1 + 5x_2 - 4x_3 = 0$

1 free variable resulted in a line in \mathbb{R}^3 .

<u>Ex.</u> Describe the solution set of $10x_1 - 3x_2 - 2x_3 = 0$

2 free variables resulted in a plane in \mathbb{R}^3 .

If A has no free variables:

- Trivial solution
- The point $\mathbf{0}$ in \mathbb{R}^3

If A has 1 free variable:

- A line in \mathbb{R}^3 that passes through the origin
- Can be described parametrically by $\mathbf{x} = t\mathbf{v}_1$. .

If A has 2 free variables:

- A plane in \mathbb{R}^3 that passes through the origin
- Can be described parametrically by $\mathbf{x} = s\mathbf{v}_1 + t\mathbf{v}_2$. .
- \rightarrow Note this represents Span $\{v_1, v_2\}$ }

When we write our solution sets in this form, it is called the parametric vector form.

If $\mathbf{b} \neq \mathbf{0}$, the linear system $A\mathbf{x} = \mathbf{b}$ is called non-homogeneous.

$$
x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b}
$$

Ex. Describe the solution set of $3x_1 + 5x_2 - 4x_3 = -3x_1 - 2x_2 + 4x_3 = 6x_1 + x_2 - 8x_3$ $-3x_1 - 2x_2 + 4x_3 = -1$ $6x_1 + x_2 - 8x_3 = -4$ $3x_1 + 5x_2 - 4x_3 = 7$

$Ax = b$ has no solutions if:

• $A\mathbf{x} = \mathbf{b}$ is inconsistent

$A**x** = **b**$ has 1 solution if:

- The corresponding homogeneous system had only the trivial solution
- $Ax = b$ has infinitely many solutions if:
- The corresponding homogeneous system had infinitely many solutions
- Solutions would be 1 vector plus a linear combination of vectors that satisfy the corresponding homogeneous system.
- $\mathbf{x} = \mathbf{p} + t\mathbf{v}_1 \rightarrow \mathbf{a}$ line not through the origin
- $\mathbf{x} = \mathbf{p} + s\mathbf{v}_1 + t\mathbf{v}_2 \rightarrow a$ plane not through the origin

Prove the previous result: