Linear Independence

A set of vectors $v_1, v_2, ..., v_p$ is <u>linearly</u> **Linear Independence**
set of vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p$ is <u>linearly</u>
dependent if there exist constants $x_1, x_2, ..., x_p$
(not all zero) such that x_2, \ldots, x_p (not all zero) such that A set of vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p$ is <u>linearly

dependent</u> if there exist constants $x_1, x_2, ..., x_p$

(not all zero) such that
 $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + ... + x_p\mathbf{v}_p = \mathbf{0}$
 \rightarrow This equation is called a <u>linear dep</u>

$$
x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \ldots + x_p\mathbf{v}_p = \mathbf{0}
$$

 \rightarrow This equation is called a <u>linear dependence</u> relation.

 $x_1 = x_2 = \ldots = x_p = 0$ is the only solution.

Ex. Determine if the vectors are dependent. Find
a linear dependence relation. $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\mathbf{v}_1 = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ a linear dependence relation. $\begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} 4 \end{bmatrix}$ $\begin{bmatrix} 2 \end{bmatrix}$ $\lceil 1 \rceil$ $\lceil 4 \rceil$ $\lceil 2 \rceil$

$$
\mathbf{v}_1 = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 5 \\ 6 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}
$$

$$
x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \ldots + x_p\mathbf{v}_p = \mathbf{0}
$$

 \rightarrow Note this is the same as our homogeneous equation $A\mathbf{x} = \mathbf{0}$, where the vectors are the $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_p\mathbf{v}_p = \mathbf{0}$
 \rightarrow Note this is the same as our homogeneou

equation $A\mathbf{x} = \mathbf{0}$, where the vectors are th

columns of A.

<u>Thm.</u> The following are equivalent:

i. $A\mathbf{x} = \mathbf{0}$ has on $x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_p \mathbf{v}_p = \mathbf{0}$
 \rightarrow Note this is the same as our homogeneous

equation $A\mathbf{x} = \mathbf{0}$, where the vectors are the

columns of A.

Thm. The following are equivalent:

i. $A\mathbf{x} = \mathbf{0}$ has on \rightarrow Note this is the same as our homogeneous
equation A **x** = **0**, where the vectors are the
columns of *A*.
<u>Thm.</u> The following are equivalent:
i. A **x** = **0** has only the trivial solution
ii. The columns of *A* are

- i. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution
-
- $[A \ 0]$ has no free variables
- iv. A has a pivot in each column

Thm. A set of two or more vectors is linearly
dependent if and only if at least one is a linear
combination of the others. dependent if and only if at least one is a linear combination of the others. Thm. A set of two or more vectors is linearly
dependent if and only if at least one is a linear
combination of the others.
Ex. Assume a vector w is in Span $\{u,v\}$.
Describe w and show that $u, v,$ and w are
linearly depen

Describe w and show that **u**, **v**, and **w** are linearly dependent.

Ex. Determine if the vectors are dependent.
a. $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$ a. $v_1 = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$, $v_2 =$ 3 $\begin{bmatrix} 6 \end{bmatrix}$, 1 ^{, V_2} | 2 $\begin{bmatrix} 3 \end{bmatrix}$ $\begin{bmatrix} 6 \end{bmatrix}$ $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$

$$
\mathbf{b.} \ \mathbf{v}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}
$$

Two vectors are linearly dependent if one is a multiple of the other.

Note: This doesn't work for more than 2 vectors!

Thm. If a set contains more vectors than there are
entries in each vector, then the set is dependent. entries in each vector, then the set is dependent.

Thm. If a set contains more vectors than there are
entries in each vector, then the set is dependent.
Ex. Show that the set is dependent. $\begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$ 1 1 2 $\begin{bmatrix} 2 \\ 4 \\ 7 \end{bmatrix}$ $\left\{\begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 7 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix} \right\}$

Thm. If a set contains the zero vector, then the set
is dependent. is dependent.

Intro to Linear Transformations

Intro to Linear Transformations

Def. A function f from set A to set B is a relation

that assigns to each element x in set A exactly

one element y in set B. that assigns to each element x in set A exactly one element y in set B .

$$
\begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix}
$$

 $Ax = b$

We can think of A as transforming **x** in \mathbb{R}^4 to **b** in \mathbb{R}^2 .

A transformation (or <u>function</u> or <u>mapping</u>) T
from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns each vector
x in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m . from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns each vector **x** in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

 $T: \mathbb{R}^n \to \mathbb{R}^m$

 \mathbb{R}^n is the domain

 \mathbb{R}^m is the codomain

The set of all $T(x)$ is called the range

 \rightarrow The range is a subset of the codomain

The rest of this section will focus on mappings associated with matrix multiplication

 $\mathbf{x} \mapsto A\mathbf{x}$

Ex. Define a transformation
$$
T: \mathbb{R}^2 \to \mathbb{R}^3
$$
 by
\n $T(\mathbf{x}) = A\mathbf{x}$.
\na. If $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, find $T(\mathbf{u})$.
\n
$$
A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}
$$

Ex. Define a transformation
$$
T: \mathbb{R}^2 \to \mathbb{R}^3
$$
 by
\n $T(\mathbf{x}) = A\mathbf{x}$.
\nb. If $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$, find an **x** whose image under *T* is **b**.

$$
A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}
$$

Was this answer unique?

Ex. Define a transformation
$$
T: \mathbb{R}^2 \to \mathbb{R}^3
$$
 by
\n $T(\mathbf{x}) = A\mathbf{x}$.
\nc. If $\mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$, find an **x** whose image under *T* is **c**.

$$
A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}
$$

Ex. Define a transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ by
 $T(\mathbf{x}) = A\mathbf{x}$. $T(\mathbf{x}) = A\mathbf{x}$.

d. Find all x that are mapped into the zero vector.

Ex. Find the image of **x** under the transformation
 $\mathbf{x} \mapsto A\mathbf{x}$.
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 3 \\ 8 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ [3] $0 \quad 1 \quad 0$, $\mathbf{x} = \begin{bmatrix} 8 \end{bmatrix}$ $0 \quad 0 \quad 0 \quad |4|$ \overline{A} $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 3 \end{bmatrix}$ $=\begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{vmatrix}, \mathbf{x} = \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix}$ x

This projects the point onto the x_1x_2 -plane.

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if every **b** in \mathbb{R}^m is the image of *at least* one **x** in \mathbb{R}^n .

- \rightarrow The range makes up the entire codomain
- \rightarrow Every vector in \mathbb{R}^m is the output at least once

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is <u>one-to-one</u> if every **b** in \mathbb{R}^m is the image of *at most* one **x** in \mathbb{R}^n . in \mathbb{R}^m is the image of *at most* one **x** in \mathbb{R}^n .

- \rightarrow Every vector in the range is an output exactly once
- \rightarrow Not all vectors in \mathbb{R}^m are outputs
- $\rightarrow T(x)$ has either a unique solution or no solution

$$
\underline{\text{Ex.}} \text{Define } T: \mathbb{R}^4 \to \mathbb{R}^3 \text{ by } T(\mathbf{x}) = A\mathbf{x}. \text{ Does } T
$$
\n
$$
\text{map } \mathbb{R}^4 \text{ onto } \mathbb{R}^3? \text{ Is } T \text{ one-to-one?}
$$
\n
$$
A = \begin{bmatrix} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix}
$$

We remember properties of vector/matrix/scalar addition and multiplication:

Distributive: $A(\mathbf{u} + \mathbf{v}) = A(\mathbf{u}) + A(\mathbf{v})$

 $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$

Commutative: $A(c**u**) = cA(**u**)$

 $T(c\mathbf{u}) = cT(\mathbf{u})$

These lead to the properties of a linear transformation T.

For any linear transformation,

 $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$

In particular, $T(0) = 0$.

 \rightarrow This can be generalized to be true for any number of vectors. This is called the superposition principle.

<u>Ex.</u> Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = 3\mathbf{x}$. Show that
T is a linear transformation. T is a linear transformation.

What does this transformation represent graphically?

Ex. Define
$$
T: \mathbb{R}^2 \to \mathbb{R}^2
$$
 by $T(\mathbf{x}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x}$.
\nFind $T(\mathbf{u})$:
\na) $\mathbf{u} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$
\nb) $\mathbf{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

What does this transformation represent graphically?

Matrix of a Linear Transformation

We have been talking about different linear transformations, not just ones that are matrix multiplication.

In fact, all linear transformations can be represented by a matrix multiplication.

To find the matrix, we will be using the columns of I_n , , which we will call e_1 , e_2 , etc.

which we will call
$$
\mathbf{e}_1
$$
, \mathbf{e}_2 , etc.
\n
$$
I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
$$
\nThese are called the standard basis vectors of \mathbb{R}^3 .
\nThe standard basis vectors for \mathbb{R}^2 are
\n
$$
\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
$$
 and
$$
\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$

$$
\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$

Ex. Suppose *T* is a linear transformation such that
\n
$$
T(\mathbf{e}_1) = \begin{bmatrix} 5 \\ -7 \\ 2 \end{bmatrix} \text{ and } T(\mathbf{e}_2) = \begin{bmatrix} -3 \\ 8 \\ 0 \end{bmatrix}. \text{ Describe the image of an arbitrary } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.
$$

Thm. If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, there
is a unique $m \times n$ matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for
all \mathbf{x} . is a unique $m \times n$ matrix A such that $T(x) = Ax$ for all x.

 \rightarrow The columns of A will be the transformation of the columns of I. In other words:

 $A = [T(\mathbf{e}_1) \quad \dots \quad T(\mathbf{e}_n)]$

- \rightarrow This is called the standard matrix for the linear transformation.
- \rightarrow Please note mapping $\mathbb{R}^n \rightarrow \mathbb{R}^m$ requires a matrix that is $m \times n$.

<u>Ex.</u> Find the standard matrix for the transformation
that rotates each point in \mathbb{R}^2 counterclockwise
about the origin through an angle φ . that rotates each point in \mathbb{R}^2 counterclockwise about the origin through an angle φ .

p. 73-75 has the standard matrices for several common geometric linear transformations.

 \rightarrow Even more transformations come from the composition of transformations.

$$
\underline{\text{Ex.}} \text{Define } T: \mathbb{R}^4 \to \mathbb{R}^3 \text{ by } T(\mathbf{x}) = A\mathbf{x}. \text{ Does } T
$$
\n
$$
\text{map } \mathbb{R}^4 \text{ onto } \mathbb{R}^3? \text{ Is } T \text{ one-to-one?}
$$
\n
$$
A = \begin{bmatrix} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix}
$$

Thm. Consider the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$
with standard matrix A. The following are equivalent:
i. T is one-to-one. Thm. Consider the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$
with standard matrix A. The following are equivalen
i. T is one-to-one.
ii. A has a pivot in each column.
iii. A has no free variables.
iv. The columns of A a Thm. Consider the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$
with standard matrix A. The following are equivalent:
i. T is one-to-one.
ii. A has a pivot in each column.
iii. A has no free variables.
iv. The columns of A

- i. T is one-to-one.
- ii. A has a pivot in each column.
- iii. A has no free variables.
-
-

This links us with standard matrix A. The following are equivalent:
i. T is one-to-one.
ii. A has a pivot in each column.
iii. A has no free variables.
iv. The columns of A are linearly independent.
v. The equation $T(x$ last class.

Thm. Consider the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$
with standard matrix A. The following are equivalent:
i. T mans \mathbb{R}^n onto \mathbb{R}^m .

- i. T maps \mathbb{R}^n onto \mathbb{R}^m .
- ii. A has a pivot in each row.
-
-
- **<u>Thm.</u>** Consider the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$
with standard matrix A. The following are equivalent:
i. T maps \mathbb{R}^n onto \mathbb{R}^m .
ii. A has a pivot in each row.
iii. The columns of A span \math of A

<u>Ex.</u> Let $T(x_1,x_2) = (3x_1 + x_2, 5x_1 + 7)$
Does T map \mathbb{R}^2 onto \mathbb{R}^3 ? Is T one $(x_2) = (3x_1 + x_2, 5x_1 + 7x_2, x_1 + 3x_2).$ Does T map \mathbb{R}^2 onto \mathbb{R}^3 ? Is T one-to-one?