Linear Independence

A set of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ is <u>linearly</u> dependent if there exist constants x_1, x_2, \dots, x_p (not all zero) such that

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_p\mathbf{v}_p = \mathbf{0}$$

- → This equation is called a <u>linear dependence</u> relation.
- → The set is <u>linearly independent</u> if $x_1 = x_2 = ... = x_p = 0$ is the only solution.

Ex. Determine if the vectors are dependent. Find

a linear dependence relation.
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \ldots + x_p\mathbf{v}_p = \mathbf{0}$$

 \rightarrow Note this is the same as our homogeneous equation $A\mathbf{x} = \mathbf{0}$, where the vectors are the columns of A.

<u>Thm.</u> The following are equivalent:

- i. Ax = 0 has only the trivial solution
- ii. The columns of A are linearly independent
- iii. The linear system with augmented matrix[A 0] has no free variables
- iv. A has a pivot in each column

Thm. A set of two or more vectors is linearly dependent if and only if at least one is a linear combination of the others.

Ex. Assume a vector w is in Span {u,v}. Describe w and show that u, v, and w are linearly dependent.

Ex. Determine if the vectors are dependent.

a.
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$

b.
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$

Two vectors are linearly dependent if one is a multiple of the other.

Note: This doesn't work for more than 2 vectors!

Thm. If a set contains more vectors than there are entries in each vector, then the set is dependent.

Ex. Show that the set is dependent. $\begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix}$

<u>Thm.</u> If a set contains the zero vector, then the set is dependent.

Ex. Determine if the set is dependent.

a.
$$\left\{ \begin{bmatrix} 1 \\ 7 \\ 6 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 9 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 5 \end{bmatrix}, \begin{bmatrix} 4 \\ 1 \\ 8 \end{bmatrix} \right\}$$

b.
$$\left\{ \begin{bmatrix} 1\\7\\6 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 3\\1\\5 \end{bmatrix} \right\}$$

c.
$$\begin{cases}
\begin{bmatrix}
-1 \\ 2 \\ 3 \\ -5
\end{bmatrix}, \begin{bmatrix}
3 \\ -6 \\ -9 \\ 15
\end{bmatrix}$$

Intro to Linear Transformations

Def. A function f from set A to set B is a relation that assigns to each element x in set A exactly one element y in set B.

$$\begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$$
$$A\mathbf{x} = \mathbf{b}$$

We can think of A as transforming \mathbf{x} in \mathbb{R}^4 to \mathbf{b} in \mathbb{R}^2 .

A <u>transformation</u> (or <u>function</u> or <u>mapping</u>) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

 \mathbb{R}^n is the domain

 \mathbb{R}^m is the codomain

The set of all $T(\mathbf{x})$ is called the <u>range</u>

→ The range is a subset of the codomain

The rest of this section will focus on mappings associated with matrix multiplication

$$\mathbf{x} \mapsto A\mathbf{x}$$

Ex. Define a transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ by

$$T(\mathbf{x}) = A\mathbf{x}$$
.

a. If
$$\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
, find $T(\mathbf{u})$.

$$\begin{bmatrix} 1 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$

Ex. Define a transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$.

b. If
$$\mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$$
, find an \mathbf{x} whose image under T is \mathbf{b} .

$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$

Was this answer unique?

Ex. Define a transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$.

c. If
$$\mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$$
, find an \mathbf{x} whose image under T is \mathbf{c} .

$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$

Ex. Define a transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$.

d. Find all x that are mapped into the zero vector.

$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$

Ex. Find the image of x under the transformation

$$\mathbf{x} \mapsto A\mathbf{x}$$
.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 3 \\ 8 \\ 4 \end{bmatrix}$$

This projects the point onto the x_1x_2 -plane.

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if every **b** in \mathbb{R}^m is the image of *at least* one **x** in \mathbb{R}^n .

- → The range makes up the entire codomain
- \rightarrow Every vector in \mathbb{R}^m is the output at least once

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is <u>one-to-one</u> if every **b** in \mathbb{R}^m is the image of *at most* one **x** in \mathbb{R}^n .

- → Every vector in the range is an output exactly once
- \rightarrow Not all vectors in \mathbb{R}^m are outputs
- \rightarrow $T(\mathbf{x})$ has either a unique solution or no solution

Ex. Define $T: \mathbb{R}^4 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$. Does T

map
$$\mathbb{R}^4$$
 onto \mathbb{R}^3 ? Is T one-to-one?
$$A = \begin{bmatrix} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

We remember properties of vector/matrix/scalar addition and multiplication:

Distributive:
$$A(\mathbf{u} + \mathbf{v}) = A(\mathbf{u}) + A(\mathbf{v})$$

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$

Commutative: $A(c\mathbf{u}) = cA(\mathbf{u})$

$$T(c\mathbf{u}) = cT(\mathbf{u})$$

These lead to the properties of a <u>linear</u> transformation T.

For any linear transformation,

$$T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$$

In particular, $T(\mathbf{0}) = \mathbf{0}$.

→ This can be generalized to be true for any number of vectors. This is called the superposition principle.

Ex. Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = 3\mathbf{x}$. Show that T is a linear transformation.

What does this transformation represent graphically?

Ex. Define
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 by $T(\mathbf{x}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x}$.

Find *T*(**u**):

a)
$$\mathbf{u} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

b)
$$\mathbf{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

What does this transformation represent graphically?

Matrix of a Linear Transformation

We have been talking about different linear transformations, not just ones that are matrix multiplication.

In fact, all linear transformations can be represented by a matrix multiplication.

To find the matrix, we will be using the columns of I_n , which we will call \mathbf{e}_1 , \mathbf{e}_2 , etc.

$$I_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{e}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{e}_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{e}_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

These are called the standard basis vectors of \mathbb{R}^3 .

The standard basis vectors for \mathbb{R}^2 are

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Ex. Suppose T is a linear transformation such that

$$T(\mathbf{e}_1) = \begin{bmatrix} 5 \\ -7 \\ 2 \end{bmatrix}$$
 and $T(\mathbf{e}_2) = \begin{bmatrix} -3 \\ 8 \\ 0 \end{bmatrix}$. Describe the

image of an arbitrary $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

<u>Thm.</u> If $T:\mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, there is a unique $m \times n$ matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for all \mathbf{x} .

 \rightarrow The columns of A will be the transformation of the columns of I. In other words:

$$A = [T(\mathbf{e}_1) \dots T(\mathbf{e}_n)]$$

- → This is called the <u>standard matrix for the linear</u> <u>transformation</u>.
- \rightarrow Please note mapping $\mathbb{R}^n \rightarrow \mathbb{R}^m$ requires a matrix that is $m \times n$.

Ex. Find the standard matrix for the transformation that rotates each point in \mathbb{R}^2 counterclockwise about the origin through an angle φ .

- p. 73-75 has the standard matrices for several common geometric linear transformations.
- → Even more transformations come from the composition of transformations.

Ex. Define $T: \mathbb{R}^4 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$. Does T

map
$$\mathbb{R}^4$$
 onto \mathbb{R}^3 ? Is T one-to-one?
$$A = \begin{bmatrix} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

<u>Thm.</u> Consider the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ with standard matrix A. The following are equivalent:

- i. *T* is one-to-one.
- ii. A has a pivot in each column.
- iii. A has no free variables.
- iv. The columns of A are linearly independent.
- v. The equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.
- → This links us with all of the equivalent statements from last class.

<u>Thm.</u> Consider the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ with standard matrix A. The following are equivalent:

- i. T maps \mathbb{R}^n onto \mathbb{R}^m .
- ii. A has a pivot in each row.
- iii. The columns of A span \mathbb{R}^m .
- iv. The equation $A\mathbf{x} = \mathbf{b}$ has a solution for any \mathbf{b} in \mathbb{R}^m .
- v. Every **b** in \mathbb{R}^m is a linear combination of the columns of A

Ex. Let $T(x_1,x_2) = (3x_1 + x_2, 5x_1 + 7x_2, x_1 + 3x_2)$. Does T map \mathbb{R}^2 onto \mathbb{R}^3 ? Is T one-to-one?