Arc Length and Curvature

When learning arc length with parametric functions, we found that the length of a curve defined by $x = f(t)$ and $y = g(t)$ over the interval $a \le t \le b$ was c length with parametric

c length with parametric

md that the length of a
 $x = f(t)$ and $y = g(t)$ over
 $\leq b$ was
 $(t)\int_0^2 + [g'(t)]^2 dt$

formula for the length of

$$
s = \int_{}^b \sqrt{\left[f'(t)\right]^2 + \left[g'(t)\right]^2} dt
$$

We use the same formula for the length of the curve given by $\vec{r}(t) = f(t)\hat{i} + g(t)\hat{j}$ on the interval $a \le t \le b$. a $\overline{11}$

$$
s = \int_{a}^{b} \sqrt{\left[f'(t)\right]^2 + \left[g'(t)\right]^2 + \left[h'(t)\right]^2} dt
$$

$$
s = \int_{a} \sqrt{\left[f'(t) \right]^2 + \left[g'(t) \right]^2 + \left[h'(t) \right]^2} dt
$$

If $\overrightarrow{r}(t) = \langle f(t), g(t), h(t) \rangle$, we could
also write $\overrightarrow{r}^2 = \langle f', g', h' \rangle$

$$
s = \int_{a}^{b} \left| \overrightarrow{r}(t) \right| dt
$$

$$
s = \int_{a}^{b} \left| \vec{r}'(t) \right| dt
$$

Ex. Find the length of the curve $\mathbf{r} = \mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k}$ from (1,0) $r(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k}$ from $(1,0,0)$ to $(1,0,2\pi)$ $=2\pi\sqrt{2}$

These vector functions are the same: $\langle 2, 4, 8 \rangle$ $(t) = \langle t, t^2 \rangle$ $\overrightarrow{r_1}(t) = \left\langle t, t^2, t^3 \right\rangle \quad \text{if } t \in \mathbb{R}^n \quad 1 \leq t \leq 2$ $\overline{}$ $(u)=\langle e^u, e$ $2u \frac{3u}{2}$ $\overrightarrow{r_2}(u) = \langle e^u, e^{2u}, e^{3u} \rangle^2 \qquad 0 \le u \le \ln 2$ \rightarrow $(w) = \langle (1-w), (1-w)^2, (1-w)^3 \rangle$ - $\overrightarrow{r_3}(w) = \left\langle (1-w), (1-w)^2, (1-w)^3 \right\rangle$ $\stackrel{(2, 9, 8)}{-1} \leq w \leq 0$ \rightarrow $(t)=\left\langle \frac{t}{4}, \left(\frac{t}{4}\right)^2, \left(\frac{t}{4}\right)^5 \right\rangle$ $\overrightarrow{r_4}(t) = \left\langle \frac{t}{4}, \left(\frac{t}{4}\right)^2, \left(\frac{t}{4}\right)^3 \right\rangle$ 4 $\le t \le 8$ $\overline{}$

They are just reparameterizations of the same curve.

The <u>arc length function</u> is defined as

The arc length function is defined as
\n
$$
s(t) = \int_{a}^{t} \sqrt{\left[f'(u)\right]^2 + \left[g'(u)\right]^2 + \left[h'(u)\right]^2} du
$$

We will see how to reparameterize a curve using s.

Ex. Reparameterize the curve
 $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k}$ with re $r(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k}$ with respect to the arc length measured from $(1,0,0)$. $\overrightarrow{t} = \int_{0}^{t} \sqrt{2} du = u \overrightarrow{2} \int_{0}^{t} e^{u} du = \int_{0}^{t} \sqrt{2} du = u \overrightarrow{2} \int_{0}^{t} e^{u} du = u \overrightarrow$ $=$ $t\sqrt{2}$ $e = t\sqrt{2}$ $t=\frac{A}{\sqrt{2}}$ $\vec{\tau}(\rho) = \left\langle \cos \frac{\rho}{\sqrt{2}}, \sin \frac{\rho}{\sqrt{2}}, \frac{\rho}{\sqrt{2}} \right\rangle$

Remember the unit tangent vector of $r(t)$ is it tangent vector of **r**(*t*) is
 $(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}$ it vector of $\mathbf{r}(t)$ is
 $\begin{pmatrix} t \\ t \end{pmatrix}$
 $\begin{pmatrix} t \\ t \end{pmatrix}$ $\overset{\rightharpoonup}{r}(t)$ $\overline{T}(t)$ = $\overline{r}'(t)$ \mathbf{r} $=$ \mathbf{r} $\sum_{i=1}^{n}$ \overrightarrow{a} \rightarrow

The curvature, κ, of a curve describes how sharply it bends.

> big κ small κ

Thm. The curvature of a curve is
 $\kappa = \left| \frac{d\overrightarrow{T}}{d\overrightarrow{T}} \right|$ where T is the unit tangent vector and s is the arc length parameter. \overline{dT} $d\mathbf{s}$ $K =$ $\frac{d}{dt}$

 $\|\mp'_{(a)}\|\leq$

Ex. Find the curvature of $\vec{r}(s) = \langle 3\cos \vec{r}(s) \rangle$ $\overline{}$ $\vec{r}(s) = \langle 3\cos{\frac{3}{s}}, 3\sin{\frac{3}{s}} \rangle$ $||\vec{r}'(a)|| = \sqrt{\frac{8!}{a^4} a^2 + \frac{8!}{a^4} C a^2} = \sqrt{\frac{8!}{a^4}}$ $=\frac{1}{a^2}$ $\overrightarrow{T}(a) = \frac{\left\langle \frac{9}{a^{2}} \sin \frac{3}{a} \right|_{a} = \frac{9}{a^{2}} \cos \frac{3}{a} \right\rangle}{9/2}$ $= \langle \sin \frac{3}{4}, -\cos \frac{3}{4} \rangle$
 $= \langle \cos \frac{3}{4}, \sin \frac{3}{4}, -\frac{3}{4} \rangle$
 $|\cos \frac{3}{4} \sin \frac{3}{4} \sin \frac{3}{4} \sin \frac{3}{4} \rangle$

An easier equation would be

tion would be
\n
$$
\kappa = \frac{\left|\overline{T}'(t)\right|}{\left|\overline{r}'(t)\right|}
$$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2.$

Ex. Find the curvature of the circle with radius a.
 $\vec{r}(t) = \langle a \omega t, a \omega t \rangle$ $||\vec{r}|| = \sqrt{a^2 \sin^2 t + a^2 \cos^2 t} = \sqrt{a^2} = 0$ $\overrightarrow{T}=\frac{\langle-a, m, t, acct\rangle}{\sqrt{2\pi}}=\langle -j, t, cot\rangle$ \exists '= $\langle -\cos t, -\sin t \rangle$ $||\vec{T}'|| = \sqrt{c^2t + \sin^2 t} = |$ $K = \frac{1}{a}$

We can also find curvature using

find curvature using
\n
$$
\kappa = \frac{\left|\vec{r}'(t) \times \vec{r}''(t)\right|}{\left|\vec{r}'(t)\right|^3}
$$

Ex. Find the curvature of the space curve 2 3 r t t t t , , at any point t.

If we're looking for the curvature of a plane curve $y = f(x)$, there's yet another formula: urvature of a plane
yet another formula:
 $\frac{(x)}{(x)^2}$

$$
\kappa = \frac{\left|f''(x)\right|}{\left[1+\left(f'(x)\right)^2\right]^{3/2}}
$$

Ex. Find the curvature of the $y = x^2$ at the point
(0,0), (1,1), and (-1,1). $y'^2 = 2x$
 $y'^2 = 2$ at the points $(0,0)$, $(1,1)$, and $(-1,1)$. $(0,0)$: $K = 2$
(1,1) : $K = \frac{2}{5^{3/2}}$ $(-1,1)$ $K = \frac{2}{5^{3/2}}$

p. 877 has a summary of all the formulas from this chapter