Differentials and Error

In one variable, 1f y = f(x), the equation
dy = f'(x)dx 1s called the differential

In two variables, 1f z = f (x,y), the equation
becomes dz = f .dx + f dy

- This can be called the “total differential”
and we treat dx like Ax.



Ex. Let z=x? + 3xy — y?. Find the total differential and

compare the values of dz and Az as x changes from 2 to
2.05 and y changes from 3 to 2.96. (2,3)—=(2.95, 2.4¢)
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Ex. The base radius and height of a right circular cone are
measured as 10cm and 25¢m, respectively, with a
possible error in measurement of as much as 0.1 each.

Estimate the maximum error 1n the*ca(l%ulg)ted Volun%? of
a °,1%) Vz+mr(i0)-2$
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Chain Rule

In Calculus I, we learned the chain rule:
d

2 ((x))]= 1 (s(0)g ()
Another way to write this would be to
assume that y = f(x) and x = g(?):

dy dydx

dt  dx di
In multivariable, this second method 1s used.




Let w=f(x,y), with x = g(¢) and y = h(?):

dw owdx oOwdy
dt oOx dt Oy dt

Ex. Let w=x?y — y?, where x = sin ¢t and y = €.
Find <.
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Let w=f(x,y), with x = g(s,?) and y = A(s,):
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Thm. If F(x,y) = 0 defines y implicitly as a
function of x, then
dy _—F,
dx F
Ex. Find y' if x3 + y 6xy.
v ’+ y - b x y = 0




Thm. If F(x,),z) = 0 defines z implicitly as a
function of x and y, then
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Ex. If m 6xyz'= 1, find the first
partial derivatives of z.
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Directional Derivatives and Gradients

The gradient of a function f(x,y) 1s the
vector:

VI (x,2)=(/. (x.2). £, (%.0))

-> This is sometimes written grad f

-> Note that Vf is in 2-D, even though
f(x,y)1s1n 3-D



Ex. Let f(x,y)=sinx+ &%, find Vf(0,1).
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The rate of change 1n the x-direction
(toward the vector i) 1s f,

The rate of change 1n the y-direction
(toward the vector j) 1s f,

What 1f we want the rate of change 1n the
direction of an arbitrary vector u?

—> This 1s called the directional derivative
in the direction of u.



Thm. The directional derivative of f 1n the

direction @tor wis

D,f(x.y)=Vf (x.y)u




Ex. Find the D f if f(x,y) =x° - 3xy + 4y* and
1f u 1s the vector in the direction of @ = Z,

What 1s D, f(1,2)? %o >
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Ex. Find the directional derivative of
f(x,y) =x%7 — 4y at the point (2,-1) in the
direction fromA(2,-1) tof(4,4). g = (2, §)
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1. It Vf =0, then D_f (x,y) = 0 for all u.

11. The direction of maximum increase of f

1s given by V/, and the maximum value
of D, f 1s |Vf]|.

111. The direction of minimum increase of f

1s given by -V/, and the minimum value
of D, f 1s -|Vf]|.



Ex. If f(x,y) =x¢e, find the direction in which f
has the maximum rate of change. What 1s this
maximum rate?
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Ex. The temperature at a point on a plane 1s given
by the equation 7(x,y) = 20 — 4x? — y?. In what
direction from (2,-3) does the temperature
increase most rapidly?
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Ex. A heat-seeking particle 1s located at (2,-3) on a metal plate
whose temperature is given by 7(x,y) = 20 — 4x* — y*. Find
the path of the particle as it moves 1n the direction of
maximum temperature increase. g7 = (-3x, -1y )
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This works because the gradient always
points toward the nearest peak or away
from the nearest valley...

Thm. If f 1s differentiable at (x,,y,) and
V[ (xy,yy) # 0, then V[ (x,,y,) 1s normal to
the level curve through (x,,y,).
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Ex. Find a normal vector to the level curve

Cnding to c =36 of f(x,y)=5x*+y?
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