
Change of Variables

In 2-D, 

We changed the variables to make the 
integral easier.
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For double integrals, we change the 
variables to u and v.

 Just like in 2-D where dx = ??  du, we 
need to have dy dx = ??  du dv.

 This extra stuff is called the Jacobian



Def. If x = g(u,v) and y = h(u,v), then the 
Jacobian of x and y with respect to u and v is

(absolute value of the determinant)
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Ex. Find the Jacobian for the change of 
variables x = u cos v and y = u sin v.



This means that

where R is in the xy-plane and S is in the 
rθ-plane.
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The point is to make a simpler, more 
easily integrated region.



Ex. Use the change of variables x = 2u + v, y = u + 2v to 
evaluate the integral              where R is the triangular 

region with vertices (0,0), (2,1), and (1,2).
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Ex. Let R be the region bounded by x – 2y = 0, x – 2y = -4, 
x + y = 1, and x + y = 4.  Find a change of variables, 
sketch the image in the uv-plane, calculate the Jacobian, 
and evaluate               .3
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Def. If x = g(u,v,w), y = h(u,v,w), and                
z = j(u,v,w), then the Jacobian of x, y, and z
with respect to u, v and w is
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