Change of Variables In 2-D, $\int x\sqrt{x^2-1} dx = \int \sqrt{u} \left(\frac{1}{2}du\right)$ \rightarrow We changed the variables to make the integral easier.

For double integrals, we change the variables to u and v .

- \rightarrow Just like in 2-D where $dx = ?? du$, we need to have $dy dx = ?? du dv$.
- \rightarrow This extra stuff is called the Jacobian

<u>Def.</u> If $x = g(u,v)$ and $y = h(u,v)$, then the
<u>Jacobian</u> of x and y with respect to u and v is <u>ef.</u> If $x = g(u,v)$ and $y = h(u,v)$, then the
Jacobian of x and y with respect to u and v is and $y = h(u,v)$, then the

und y with respect to u and u
 $\left(\frac{x,y}{u,v}\right) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$

value of the determinant

$$
\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}
$$

(absolute value of the determinant)

Ex. Find the Jacobian for the change of
variables $x = u \cos v$ and $y = u \sin v$. variables $x = u \cos v$ and $y = u \sin v$.

$$
\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \cos v & -u \sin v \\ \sin v & u \cos v \end{vmatrix}
$$

= u cos² v + u sin² v = u

This means that $\iint_{\mathbb{R}} f(x, y) dy dx = \iint_{\mathbb{R}} f(r \cos \theta, r \sin \theta) r dr d\theta$ where R is in the xy-plane and S is in the $r\theta$ -plane.

The point is to make a simpler, more easily integrated region.

<u>Def.</u> If $x = g(u,y,w)$, $y = h(u,y,w)$, and
 $z = j(u,y,w)$, then the <u>Jacobian</u> of x, y, and <u>ef.</u> If $x = g(u, v, w)$, $y = h(u, v, w)$, and
 $z = j(u, v, w)$, then the <u>Jacobian</u> of x, y, and z

with respect to u, v and w is with respect to u , v and w is $(x, y, w), y = h(u, v, w)$, and
then the <u>Jacobian</u> of x, y, and
to u, v and w is
 $\left(\frac{x}{w}, y, z\right) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$ $(y, y, w), y = h(u, y, w)$, and
then the <u>Jacobian</u> of x, y, and
to u, v and w is
 $\frac{(x, y, z)}{(u, v, w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$

$$
\frac{\partial(x,y,z)}{\partial(u,v,w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}
$$