Math 206 – Differential Equations Andy Rosen

www.rosenmath.com

PLEASE SIGN IN

Student Learning Outcomes

Student Learning Outcomes
• Successful students will be able to compare
first- and second-order differential equations, Student Learning Outcomes
Successful students will be able to compare
first- and second-order differential equations,
solve these equations using appropriate solve these equations using appropriate techniques including constructing solutions using series and matrices, and apply them to problems in science and engineering.

Definitions and Terms

Definitions and Terms
A <u>differential equation</u> (diff. eq., DE) is an equation that involves x , y , and some equation that involves x , y , and some derivatives of y. derivatives of y.
 $\frac{dy}{dx} + 5y = e^x$ $\left(\frac{d^2y}{dx^2}\right) - \frac{dy}{dx} + 6y = 0$
 $x + y''' = 2xy' + y$

rese are called <u>ordinary differential</u>

equations (ODEs) because y is a function

of only x. 5 dy $5y = e^x$ $y = e^x$ dx $+5y=e^{x}$ $\frac{d^2 y}{dx^2} - \frac{dy}{dx} + 6y = 0$ \mathcal{V} $\overline{dx^2}$ \overline{dx} $-\frac{dy}{dx} + 6y = 0$

$$
x + y''' = 2xy' + y
$$

These are called ordinary differential of only x .

Equations using partial derivatives are called partial differential equations (PDEs).

We will only be studying ODEs in this course.

The order of a DE is the highest derivative in the equation.

$$
\frac{d^3y}{dx^3} + \left(\frac{dy}{dx}\right)^5 = 0 \quad \leftarrow \text{Order 3}
$$

$$
y'''
$$

\n y'''
\n $y^{(5)}$
\n $\frac{d^{3}P}{dt^{3}} + \left(\frac{dP}{dt^{3}}\right)^{5} = 0$

A DE is <u>linear</u> if it is linear in $y, y', y'',$
i.e. Each term has a coefficient that is a $, y'', \ldots, y^{(n)}$

i.e. Each term has a coefficient that is a DE is <u>linear</u> if it is linear in y, y', y'',..., y⁽ⁿ⁾

. Each term has a coefficient that is a

function of only x.

<u>Linear</u>
 $y - 2y' + y = 0$
 $y = 0$
 $y = 0$
 $y = 0$
 $y' + 2y = e^x$

 $(y-1)y'+2y=e^x$ 2 $\frac{d^2y}{dx^2} + \sin(y) = 0$ dx^2 $+\sin(y)=0$ 4 $\frac{y}{4} + y^2 = 0$ d^4y \mathcal{Y}^{ζ} dx^2 $+\sqrt{2}=0$

Practice Problems

State the order of the DE and determine if it is linear or non-linear.

1)
$$
x \frac{d^3 y}{dx^3} - \left(\frac{dy}{dx}\right)^4 + y = 0
$$

\n2) $\frac{d^2 u}{dr^2} + \frac{du}{dr} + u = \cos r$
\n3) $\frac{d^2 R}{dt^2} = -\frac{k}{R}$ $\left(\frac{x}{y} + f(x)\right)^{x} + f_v(x)\left(\frac{x}{y}\right)^{x} + \frac{g(v)}{y}$

 $y(x)$, defined on an interval *I*, is a <u>solution</u> of a DE if, when substituted into the DE, it a DE if, when substituted into the DE, it reduces the equation to an identity. $y(x)$, defined on an interval *I*, is a <u>solution</u> c
a DE if, when substituted into the DE, it
reduces the equation to an identity.
<u>Ex</u>. Verify that the given function is a
solution to the given DE.

solution to the given DE.

$$
y' = xy^{\frac{1}{2}}, \underbrace{(y = \frac{1}{16}x^4)}_{\frac{1}{4}x^3} = x(\frac{1}{16}x^4)^{\frac{1}{2}}
$$

 $\frac{Ex}{x}$. Verify that the given function is a solution to the given DE. solution to the given DE.

$$
y'' - 2y' + y = 0, y = xe^{x} \longrightarrow y' = xe^{x+e^{x} + e^{x} + e^{x}}
$$

\n
$$
e^{x(x+1)} - 2e^{x(x+1)} + xe^{x} = 0
$$

\n
$$
e^{x(x+2) - 2x - 2 + x} = 0
$$

\n
$$
e^{x} \cdot 0 = 0
$$

\n
$$
e^{x} \cdot 0 = 0
$$

Notice that $y = 0$ is a solution to both DEs. This is called the trivial solution.

Practice Problems

Verify that $y = \frac{6}{5} - \frac{6}{5}e^{-20t}$ is a solution to the DE $\frac{dy}{dt} + 20y = 24$

The interval on which a solution is defined is called the interval of definition.

a.k.a. interval of existence

a.k.a. interval of validity

a.k.a. domain of the solution

Consider $y = \frac{1}{x}$, which is a solution to the DE $xy' + y = 0.$

As a function, $y = \frac{1}{x}$ has domain $(-\infty, 0)$ $y = \frac{1}{x}$ has domain $(-\infty, 0) \cup (0, \infty)$

- A solution must be defined on an interval, so we must choose the interval of definition, either $(-\infty, 0)$ or $(0, \infty)$ or some subinterval.
- Which one we choose depends on other info that we could be given.

So $x^2 + y^2 = 25$ is a solution to the differential equation $\frac{dy}{dx} = \frac{-x}{y}$. This is called an <u>implicit</u> solution. So $x^2 + y^2 = 25$ is a solution to the differential
equation $\frac{dy}{dx} = \frac{-x}{y}$. This is called an <u>implicit
solution</u>.
The <u>explicit solution</u> could be $y = \sqrt{25 - x^2}$ or
 $y = -\sqrt{25 - x^2}$ $\frac{1}{dx} = \frac{1}{y}$. $=\frac{1}{1}$

 $y = \sqrt{25 - x^2}$ $y = -\sqrt{25 - x^2}$

The one we choose depends on other information that we may be given.

Not all implicit solutions can be written explicitly.

Note that $x^2 + y^2 = c$ would also be a solution for the DE $\frac{dy}{dx} = \frac{-x}{y}$ for any $c \ge 0$. $\frac{d}{dx} = \frac{1}{y}$ $=\frac{1}{1}$

 $x^2 + y^2 = c$ is called a <u>one-parameter family of</u> solutions

When solving an n^{th} order DE, we will want to find an *n*-parameter family of solutions.

Ex. Show that $x = c_1 \sin 4t$ is a s
linear DE $x'' + 16x = 0$. <u>Ex.</u> Show that $x = c_1 \sin 4t$ is a solution to the linear DE $x'' + 16x = 0$.
 $x' = 4c_1 cos 4t$
 $x'' = -16c_1 sin 4t$ $-16c$, ain 4t + 160, air 4t = 0
0 = 0

A solution where we've chosen a value for the parameter is called a particular solution. With the parameters, we call it the general solution.

$$
\Rightarrow x^2 + y^2 = 25
$$
 was a particular solution

$$
\Rightarrow x^2 + y^2 = c
$$
 was a general solution

Ex. We saw that
$$
y = \frac{1}{16}x^4
$$
 was a solution to
\n $y' = xy^{\frac{1}{2}}$. A family of solutions is
\n $y = (\frac{1}{4}x^2 + c)^2$.

Note that we get our particular solution by setting $c = 0$. But we saw that $y = 0$ is also a solution, and its not a member of the family of solutions.

This extra solution is called a singular solution.

Note that $y \in cx^4$ is a family of solutions of bte that $y \in cx^4$ is a family of solution
the DE $xy' - 4y = 0$. $(y=0)$
wever, a singular solution could be

However, a singular solution could be

$$
y = \begin{cases} -x^4 & x > 0 \\ x^4 & x \le 0 \end{cases}
$$

When we find a family of solutions, how can we know if it describes all solutions or if there are singular solutions…

$$
\begin{cases} \frac{dx}{dt} = x + 3y \\ \frac{dy}{dt} = 5x + 3y \end{cases}
$$

 \bullet

is called a system of DEs. The solution is $x = f(t), y = g(t).$

Ex. Verify that $x = e^{-5t}$, $y = 2e$
to the system of DEs $-5t, y = 2e^{-5t}$ is a solution to the system of DEs

