
Warm-up Problems

1. Determine the order of the DE

Is it linear?

2. Verify that is a solution to    
y – 4y + 3y = x.
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Initial Value Problems
A differential equation, together with 

values of the solution and its derivatives 
at a point x0, is called an initial value 
problem (IVP).

Ex.  7 , 0 3dy
dx y y 



An nth order DE requires the value of y and 
its first n – 1 derivatives at x0.

- It would have n parameters, so n pieces of 
information are needed.
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Ex. y = cex is a family of solutions of y = y.  
Find the particular solution that satisfies 
y(1) = -2.



Ex. is a family of solutions of           

y + 2xy2 = 0.  Find the particular solution 
satisfying y(0) = -1.

Consider the interval of definition.
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Ex. x = c1cos 4t + c2sin 4t is a family of 
solutions for x + 16x = 0.  Find the 
solution to the IVP
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We saw that               is a solution to the IVP                                                
, but so is the solution       

y = 0.

- Can there be two different solutions to the 
same IVP?
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Thm. Existance of a Unique Solution (1st

Order DE)

If f (x,y) and      are continuous in some open 
region containing (x0,y0), then there is an 
interval I in the region and a unique 
function y(x) defined on I that is a solution 
to the IVP
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Ex. Show that                                fails the 
hypotheses for this theorem.
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Ex. Show that y = y, y(1) = -2 satisfies the 
theorem, so the solution we found is the 
only solution.



Note that if we use the IVP                          
the solution               is unique.

 Failing the hypotheses of the theorem 
doesn’t mean that the solution isn’t 
unique, we just can’t say for sure that 
there isn’t some other solution.
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Mathematical Models              
(a.k.a. Applications)

A population can be described by the 
relationship

Means proportional:

 Only works for small populations over a 
short time span, like bacteria

Radioactive decay has the same 
relationship            , but here the constant 
is negative
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Ex. Suppose the members of a population are 
born at a rate proportional to the size of 
the population (P), and die at a constant 
rate R.  Determine the DE for the 
population P(t).



Ex. The acceleration of a jetski is found to be 
proportional to the sum of its velocity and 
its distance, s(t), from the beach.  
Determine a DE for s(t).



Mixing salt solutions (brine) with different 
concentrations can also be represented by a 
DE.

Let A(t) represent the amount of salt in the 
tank at time t, then

   input rate of salt - output rate of salt
dA
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



Ex. A tank initially holds 300 gallons of brine, made up of 
50 pounds of salt.  A solution with a concentration of 2 
pounds of salt per gallon is pumped in at a rate of 3 
gallons per minute.  While being stirred, fluid is being 
pumped out at the same rate.  Express this as an IVP.



Other models we may use

Newton’s Law of Cooling/Warming:

where Tm = surrounding temp.

Newton’s Second Law of Motion:
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Kirchhoff’s Second Law (circuits):
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Practice Problems

Section 1.3

Problems 10, 16, 19, 25


