Warm-up Problems

Warm-up Problems
1. Determine the order of the DE
 $\frac{d^3y}{dx^3} + t \frac{d^2y}{dx^2} + (\cos^2 t)y = t^3$

$$
\frac{d^3y}{dt^3} + t \frac{d^2y}{dt^2} + \left(\cos^2 t\right)y = t^3
$$

Is it linear?

1. Determine the order of the DE
 $\frac{d^3y}{dt^3} + t \frac{d^2y}{dt^2} + (\cos^2 t)y = t^3$

Is it linear?

2. Verify that $y = e^x + \frac{x}{3}$ is a solution to
 $y''' - 4y''' + 3y = x$. Determine the order of the D
 $\frac{d^3y}{dt^3} + t \frac{d^2y}{dt^2} + (\cos^2 t)y = t^3$

Is it linear?

Verify that $y = e^x + \frac{x}{3}$ is a sol
 $y''' - 4y''' + 3y = x$. $y = e^{x} + \frac{x}{3}$

Initial Value Problems

A differential equation, together with values of the solution and its derivatives at a point x_0 , is called an initial value Initial Value Problen
differential equation, together w
values of the solution and its de
at a point x_0 , is called an <u>initial</u>
problem (IVP).
 $\frac{dy}{dx} = 7y$, $y(0) = 3$

$$
\underline{\mathrm{Ex.}} \quad \frac{dy}{dx} = 7y, \ y(0) = 3
$$

An nth order DE requires the value of y and i nth order DE requires the value of y and
its first $n - 1$ derivatives at x_0 .
It would have *n* parameters, so *n* pieces of An *n*th order DE requires the value of *y* and
its first $n-1$ derivatives at x_0 .
- It would have *n* parameters, so *n* pieces of
information are needed.

information are needed.

Ex.
$$
\frac{d^3y}{dx^3} - 6\frac{dy}{dx} + y = 0
$$
, $y(0) = 3$, $y'(0) = 0$
 $y''(0) = -1$

Ex. $y = ce^x$ is a family of solutions of $y' = y$.
Find the particular solution that satisfies $y(1) = -2.$ $-2=Ce$ $C = \frac{-2}{e}$ $\sqrt{y} = \frac{-2}{e}e^{x} = -2e^{x-1}$

Consider the interval of definition.

 $\underline{\text{Ex}}_x x = c_1 \cos 4t + c_2 \sin 4t$ is a family of solutions for $x'' + 16x = 0$. Find the solution to the IVP $x'' + 16x = 0, x(\frac{\pi}{2}) = -2, x'(\frac{\pi}{2}) = 1$ $x = 2c^2t^2 + \frac{1}{4}x^{4}t$ $-2 = C_1$ $x' = -4C$, air $4t + 4C_2$ ca 4t
 $1 = -4C_1$ air $2\pi + 4C_2$ ca 2π

same IVP?

Thm. Existance of a Unique Solution (1st Order DE) Order DE)

If $f(x,y)$ and $\frac{\partial f}{\partial y}$ are continuous in some open ∂ ∂ \mathcal{V} region containing (x_0, y_0) , then there is an interval I in the region and a unique function $y(x)$ defined on I that is a solution $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$ to the IVP $\frac{dy}{dx} = f(x, y)$, $y(x_0) = y_0$ $(\chi_{\mathfrak{o}, \gamma_{\mathfrak{o}}})$ $\int (x_0,1) dx$

<u>Ex.</u> Show that $y' = (y, y)(1) = -2$ satisfies the theorem, so the solution we found is the theorem, so the solution we found is the

- Note that if we use the IVP $\frac{dy}{dx} = xy^{\frac{1}{2}}$, $y(2) = 1$ the solution $y = \frac{1}{16}x^4$ is unique. $1/$ 2 $\frac{dy}{dx} = xy^{\frac{1}{2}}, y(2) = 1$
- \rightarrow Failing the hypotheses of the theorem doesn't mean that the solution isn't unique, we just can't say for sure that there isn't some other solution.

Mathematical Models (a.k.a. Applications) A population can be described by the relationship $\frac{dP}{dt} \propto P$

 \rightarrow Means proportional: $\frac{dP}{dt}$ = $\frac{dP}{dt} = kP$

 \rightarrow Only works for small populations over a short time span, like bacteria

Radioactive decay has the same relationship $\frac{dA}{dt} \propto A$, but here the constant is negative

Ex. Suppose the members of a population are
born at a rate proportional to the size of born at a rate proportional to the size of the population (P) , and die at a constant rate R. Determine the DE for the population $P(t)$.

$$
\pm \vee \rho: \quad \rho(0) = 1,000
$$

Ex. The acceleration of a jetski is found to be proportional to the sum of its velocity and proportional to the sum of its velocity and its distance, $s(t)$, from the beach. Determine a DE for $s(t)$.

$$
\frac{d^{2}z}{dt^{2}}=K\left(\frac{dz}{dt}+\alpha\right)
$$

Mixing salt solutions (brine) with different concentrations can also be represented by a DE. concentrations can also be represented by a
DE.
et $A(t)$ represent the amount of salt in the
tank at time t, then
 $\frac{dA}{dt}$ = (input rate of salt)-(output rate of salt)

Let $A(t)$ represent the amount of salt in the tank at time t , then

dt $=$

Ex. A tank initially holds 300 gallons of brine, made up of
50 pounds of salt. A solution with a concentration of 2
pounds of salt per gallon is pumped in at a rate of 3 50 pounds of salt. A solution with a concentration of 2 pounds of salt per gallon is pumped in at a rate of 3 gallons per minute. While being stirred, fluid is being pumped out at the same rate. Express this as an IVP. rate rate out

Other models we may use

Newton's Law of Cooling/Warming:

 $\frac{dT}{dt} \propto T - T_m$ where T_m = surrounding temp. Newton's Second Law of Motion: $\frac{dT}{dt} \propto T - T_m$

$$
\frac{d^2s}{dt^2} = -g, s'(0) = v_0, s(0) = s_0
$$

Kirchhoff's Second Law (circuits): (t) 2 2 $L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{1}{C}q = E(t)$ $i(t)$ = current and Law (circuits):
 $- R \frac{dq}{dt} + \frac{1}{C} q = E(t)$
 $\begin{pmatrix} t \end{pmatrix} =$ current
 $\begin{pmatrix} t \end{pmatrix} =$ charge nd Law (circuits):
 $R \frac{dq}{dt} + \frac{1}{C}q = E(t)$
 t) = current
 (t) = charge
 (t) = voltage

= inductance $q(t)$ = charge $E(t)$ = voltage $L =$ inductance $R =$ resistance $C =$ capacitance

Practice Problems

Section 1.3

Problems 10, 16, 19, 25